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Abstract. Invasive species continue to pose major challenges for managing coupled human–environ-
mental systems. Predictive tools are essential to maximize invasion monitoring and conservation efforts in
regions reliant on abundant freshwater resources to sustain economic welfare, social equity, and ecological
services. Past studies have revealed biotic and abiotic heterogeneity, along with human activity, can
account for much of the spatial variability of aquatic invaders; however, improvements remain. This study
was created to (1) examine the distribution of aquatic invasive species richness (AISR) across 126 lakes in
the Adirondack Region of New York; (2) develop and compare global and local models between lake and
landscape characteristics and AISR; and (3) use geographically weighted regression (GWR) to evaluate
non-stationarity of local relationships, and assess its use for prioritizing lakes at risk to invasion. The evalu-
ation index, AISR, was calculated by summing the following potential aquatic invaders for each lake:
Asian Clam (Corbicula fluminea), Brittle Naiad (Najas minor), Curly-leaf Pondweed (Potamogeton crispus),
Eurasian Watermilfoil (Myriophyllum spicatum), European Frog-bit (Hydrocharis morsus-ranae), Fanwort
(Cabomba caroliniana), Spiny Waterflea (Bythotrephes longimanus), Variable-leaf Milfoil (Myriophyllum hetero-
phyllum), Water Chestnut (Trapa natans), Yellow Floating Heart (Nymphoides peltata), and Zebra Mussel
(Dreissena polymorpha). The Getis-Ord Gi� statistic displayed significant spatial hot and cold spots of AISR
across Adirondack lakes. Spearman’s rank (q) correlation coefficient test (rs) revealed urban land cover
composition, lake elevation, relative patch richness, and abundance of game fish were the strongest predic-
tors of aquatic invasion. Five multiple regression global Poisson and GWR models were made, with GWR
fitting AISR very well (R2 = 76–83%). Local pseudo-t-statistics of key explanatory variables were mapped
and related to AISR, confirming the importance of GWR for understanding spatial relationships of
invasion. The top 20 lakes at risk to future invasion were identified and ranked by summing the five GWR
predictive estimates. The results inform that inexpensive and publicly accessible lake and landscape data,
typically available from digital repositories within local environmental agencies, can be used to develop
predictions of aquatic invasion with remarkable agreement. Ultimately, this transferable modeling
approach can improve monitoring and management strategies for slowing the spread of invading species.
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INTRODUCTION

The integrity of the planet is being stressed
beyond its limits (WWF 2015); thus, it is impor-
tant to improve strategies and techniques for
managing coupled human–environmental sys-
tems. Biodiversity is a key underlying indicator
for evaluating environmental well-being associ-
ated with sustainability (Shaker 2015a), and at
the global scale, it has steadily fallen over the
last four decades (Butchart et al. 2010). Multiple
interacting forces are linked to the decline of spe-
ciation, which have been summarized by conser-
vation biologists and environmental managers
under the acronym HIPPO: habitat destruction,
invasive species, pollution, population, and over-
harvesting (Wilson 2002). Biodiversity loss is
fueled largely by population growth, which has
been recently projected to continue past 2100
(Gerland et al. 2014). The increased demand for
socioeconomic well-being has metabolized natu-
ral landscapes, which is the most direct cause of
ecosystem degradation (Vitousek et al. 1997,
Foley et al. 2005, Liu et al. 2007, Shaker 2015b).
Invasive species (IS), non-indigenous flora and
fauna that adversely impact native ecosystems
and economic activities that depend on them, is
second only to habitat loss for decreasing bio-
diversity (Wilcove et al. 1998, Grime 2006). Over
40% of threatened or endangered species are con-
sidered at risk primarily due to alien-IS (Pimentel
et al. 2005). That said, it is likely that freshwater
ecosystems are the most impacted by anthro-
pogenic-related stressors (Naiman and Turner
2000, Foley et al. 2005, MEA 2005, Novotny et al.
2005, Liu et al. 2007, Shaker and Ehlinger 2014).

Water resources management is considered a
necessity for maintaining or improving human
well-being (Baron et al. 2002, Gleick 2003). To
support this, many world nations have adopted
laws at different levels of government to protect
or improve the integrity of hydrologic systems
(Karr 2006). In the United States, the Clean Water
Act (1972) has a goal of restoring and maintain-
ing the chemical, physical, and biological integ-
rity of the Nation’s waters. The Act also defined

pollution as any human activity that degrades a
water body’s integrity. Specifically, “integrity” is
defined as the ability of a landscape–aquatic
ecosystem to support and maintain “a balanced
integrated, adaptive community of organisms
having a species composition, diversity, and
functional organisms comparable to that of a nat-
ural biota of the region” (Karr et al. 1986). In
many world regions, human activities have
altered landscapes, and their associated aquatic
ecosystems, such that restoring them to any pre-
disturbed form is likely impossible (Novotny
2003). Major anthropogenic causes include land
cover modification that changes natural hydrol-
ogy, non-point and point discharge of pollutants
from various sources, and the introduction of
non-indigenous flora and fauna that adversely
impact the integrity of native ecosystems.
The negative impacts of IS on native species,

communities, and ecosystems have been widely
investigated since the late 1950s (Lodge 1993, Sim-
berloff 1996, Elton 2000), and are now considered
a substantial component of global environmental
change (Vitousek et al. 1996). Aquatic and terres-
trial IS can completely disrupt the function of
ecosystems, replace native species, and destroy
human-oriented constructions such as fisheries
(Simberloff et al. 2005). The severe economic
impact of these species is unmistakable; estimated
costs of invasives worldwide total more than $1.4
trillion—5% of the global economy (Pimentel
et al. 2001). Economic damages and control costs
due to IS are valued at $120 billion annually in
the United States alone (Pimentel et al. 2005).
In an example specific to aquatic invasion,

maintenance costs for electricity generation and
water treatment facilities due to Zebra Mussels
(Dreissena polymorpha) were estimated at $267
million in North America, from 1989 to 2004
(Connelly et al. 2007). Additionally, Zhang and
Boyle (2010) found that the presence of Eurasian
Watermilfoil (Myriophyllum spicatum) in lakes
could decrease surrounding property values by
more than 15%. An assessed $500 million in eco-
nomic losses occur each year in the Hudson
River system and New York State Canals from
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some 154 non-native species; 80% of that loss is
in commercial and sport fishing (APA 2015). To
mitigate impacts associated with IS, the U.S.
government created Executive Order no. 13112
to direct federal agencies “to prevent the introduc-
tion of IS and provide for their control and to min-
imize the economic, ecological, and human health
impacts that IS cause” (EO 1999:6183–6186). To
further decrease IS impacts, local environmental
agencies continue to create new planning and
policy initiatives. In example, the New York State
Department of Environmental Conservation
enacted efforts in 2015 to slow the spread of IS
by establishing the state’s first lists of prohibited
and regulated species (6 NYCRR § 575). Despite
a growth of environmental management initia-
tives, IS continue to pose major challenges
worldwide. Specific to the forthcoming study,
the Adirondack Park Agency (APA) has seen a
steady increase in the establishment of harmful
exotic species since monitoring began in 2001
(APIPP 2013). Using publicly available data-
bases, this study was created to (1) identify
important lake and landscape conditions that
predict aquatic invasive species richness (AISR)
and (2) improve IS monitoring tools for progress-
ing detection and management efforts.

Lake and landscape approach
Humans are the main propagators of IS, and

globalization has exacerbated that rate of inva-
sion. Invasion is a multi-step process comprising
the following three phases: (1) initial dispersal
(where an organism moves from its native habi-
tat, often over long distances, to a new habitat
outside of its home range); (2) establishment of
self-sustaining populations within the new habi-
tat; and (3) spread of the organism to nearby habi-
tats (Puth and Post 2005). Once established, IS are
often impossible to eradicate. The initial dispersal
stage of invasion is the phase that the other two
rest; thus, it is during this stage that efforts can
prevent the establishment and subsequent
impacts of IS (Simberloff et al. 2005). Therefore, it
may be possible to slow harmful non-indigenous
species, prioritize management resources, and
protect environmentally sensitive areas, by pre-
dicting where invaders are most likely to spread
(Buchan and Padilla 2000). Predictive tools are
essential to maximize IS monitoring and conser-
vation efforts in regions reliant on abundant

freshwater resources to sustain economic welfare,
social equity, and ecological services.
The development of appropriate management

strategies to protect freshwater resources and
services from aquatic invasive species (AIS)
requires a thorough understanding of coupled
human–environmental systems that support
their initial dispersal, establishment of a self-
sustaining population, and spread (Puth and
Post 2005). The means and routes that IS are
introduced into new environments are called
“vectors” and “pathways,” respectively. Much of
AIS transmission has been linked to the overland
movement of small-craft boats (e.g., Leung et al.
2006, Rothlisberger et al. 2010). Small-craft boats
are vessels less than 40 feet (12.2 m) in length,
including canoes and kayaks, personal water-
crafts, powerboats, small commercial and recre-
ational fishing boats, sailboats, and pontoon
boats, and associated fishing gear, that can be
towed overland on trailers (Rothlisberger et al.
2010). Other relevant lake and landscape predic-
tors of aquatic invasion include lake area, eleva-
tion, surrounding land cover composition, and
landscape diversity measures (Shaker et al.
2013); factors that influence water quality, num-
ber of game fish, number and type of boat ramps,
bedrock type, littoral area, water source, number
of residences, and proximity to roads (Buchan
and Padilla 2000); distance to nearest invaded
waterway, lake size, alkalinity, Secchi depth, and
lake depth (Roley and Newman 2008); riparian
use, interaction with other IS, substrate material,
and debris (Maezo et al. 2010); wave action,
water-level drawdown, photic zone depth, aqua-
tic vegetation shading, and native species present
(Olson et al. 2012). Lastly, global environmental
fluctuations linked to climate change are pro-
jected to accelerate the stages of invasion and
ultimately exacerbate their spread (Hellmann
et al. 2008, Rahel and Olden 2008).
Future societal and natural unknowns make it

difficult to accurately predict outcomes for cou-
pled human–environmental systems. The existing
challenges associated with global environmental
change, and the agreed upon remedy of sustain-
able development, are dependent on applied
research (Shaker 2015a). Since it is impossible to
measure all water parameters associated with pre-
dicting aquatic invasion, a landscape ecology
approach allowed for landscape proxies during
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predictive modeling. Landscape ecology is a
multidisciplinary science for understanding rela-
tionships between ecological processes and geo-
graphic patterns across spatial and temporal
scales (Wu and Hobbs 2007). Because landscapes
are inherently interconnected geophysical, biolog-
ical, and socioeconomic systems, this modeling
approach was deemed suitable for this study.
Evaluation indices can be used to calibrate, or
gauge, a landscape using a single number, and
have been used widespread in landscape–aquatic
ecological studies (i.e., Alberti et al. 2007, Shandas
and Alberti 2009, Shaker and Ehlinger 2014).
Monitoring, modeling, and assessing coupled
landscape–aquatic ecosystems can be accom-
plished using landscape ecology tools and spatial
analysis methods (i.e., Shaker et al. 2010, Shaker
and Ehlinger 2014). Previously, studies have illus-
trated the importance of including configuration
metrics into landscape–aquatic condition research
(e.g., Alberti et al. 2007, Shandas and Alberti
2009, Shaker and Ehlinger 2014); however, few
have directly investigated how riparian landscape
patterns influence the dispersal, survival, or prop-
agation of harmful exotic species.

Monitoring IS across large geographic extents
remains one of the greatest challenges to slowing
their advancement. This research builds upon
previous studies (i.e., Buchan and Padilla 2000,
Capers et al. 2009) to further investigate relation-
ships between lake and landscape characteristics
and AIS. Biotic and abiotic heterogeneity of lake
and landscape conditions along with human
activity can account for much of the spatial vari-
ability of aquatic invaders; however, important
research remains. This study was organized
around three guiding objectives to (1) examine
the distribution of AISR across 126 lakes in the
Adirondack Region of New York; (2) develop
and compare global and local models between
lake and landscape characteristics and AISR;
and (3) use geographically weighted regression
(GWR) to evaluate non-stationarity of local rela-
tionships, and assess its use for prioritizing lakes
at risk to invasion. This research aimed to
improve scientific and applied understanding of
coupled landscape–aquatic ecological relation-
ships. It also serves to provide environmental
management agencies’, scientists’, environmental
planners’, and policymakers’ macroscale tech-
niques for monitoring and modeling IS.

Study area
The Adirondack Park is the premier state-level

park in the northeastern United States, with a
longstanding history of preservation, conserva-
tion, and public–private partnership. It is an
Upstate New York protected area and National
Historic Landmark. New York Legislation estab-
lished the basis of the Park around forest preser-
vation in 1885, but it was not until 1892 that the
Park was officially created. Environmental stew-
ardship of the Adirondacks was furthered with
the “forever wild” amendment to the state con-
stitution in 1894. Through Article 14 of the New
York State Constitution, the Forest Preserve
lands are constitutionally protected: “The lands
now or hereafter constituting them shall be for-
ever kept as wild forest lands. They shall not be
sold, nor shall they be leased or taken by any per-
son or corporation public or private.” Later, the
New York State Legislature created the APA in
1971 with the mission to protect private and pub-
lic resources within Park limits (commonly
known as the “Blue Line”) through the exercise
of the powers and duties of the Agency as pro-
vided by law (APA 2015). The thesis of the APA
Act is “to ensure optimum overall conservation,
development, and use of the unique scenic, aes-
thetic, wildlife, recreational, open space, historic,
ecological, and natural resources of the Adiron-
dack Park.” In response to protecting the Adiron-
dack Region from the negative impacts of
invading species, the APA, The Nature Conser-
vancy, New York Department of Environmental
Conservation (NYDEC), and Department of
Transportation (DOT) initiated the Adirondack
Park Invasive Plant Program (APIPP) in 1998.
The Adirondack Chapter of The Nature Conser-
vancy houses APIPP. APIPP coordinates two
regional projects: the Aquatic Invasive Species
Project and the Terrestrial Invasive Species
Project.
The Adirondack Park is the largest state-level

park in the conterminous United States and is
comparable in size to the State of Vermont. The
Adirondack Park region of New York covers 2.4
million hectares (5.9 million acres) and includes
roughly 103,000 ha (398 miles2) of lakes and
13,000 km (8078 miles) of streams (Regalado and
Kelting 2015). The Park boundary overlaps with
five major watersheds, and roughly half of its
landscapes drain into the Laurentian Great
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Lakes. Twelve counties intersect the Park limits,
with only Essex and Hamilton Counties wholly
within its borders. Within the “Blue Line” limits
of the Park, a wide variety of habitats including
wetlands and old-growth forests exist, significant
topographic variation with 46 high mountain
peaks (max elevation = 1629 m; 5343 ft.) which
draw many outdoor enthusiasts. Situated within
a day’s drive of New York City and Montreal, the
Park is well positioned to offer its unique blend
of wilderness solitude, outdoor recreation, and
community life to millions of visitors who, in
increasing numbers, view the Park as a unique
travel destination. According to Sharpe et al.
(2001), over 200,000 seasonal residents and six
million visitors are attracted to the Park annually.
Furthermore, the Park is home to 132,000 perma-
nent residences and has over 100 towns and
villages (APA 2015). The mixture of public and
private lands is a distinguishing feature of the
Park. As of 2013, state owned land, private
owned land, and water features account for 51%,
43%, and 6% of total Park area, respectively
(APSLMP 2014). Lastly, the Park contains over
8000 km of paved roads, grouped into 1965 km
of state and federal roads, 1803 km of county
roads, and 4421 km of local roads (Regalado and
Kelting 2015).

A total of 126 lakes, selected with areas greater
than 25 hectares to assure data accuracy, were
provided from the APIPP (2013) Annual Report
(Fig. 1). At that time, 94 lakes recorded at least
one aquatic invasive plant or animal from the
total 311 waterways surveyed (APIPP 2013). The
126 lakes cross all 12 counties of the Park, which
include a vast diversity of lake (i.e., area) and
landscape (i.e., elevation) conditions. The water
resources of the region are critical for maintaining
the environmental and socioeconomic well-being
of the Park. The water’s designated use, estab-
lished by the state, also impacts bordering land
holdings and use. Major causes of aquatic impair-
ment within the Adirondack Park are linked to
poor land-use practices, acidification of waters
through regional deposition, and the spread of
AIS. First documented in 1984 by the Adirondack
Biota Project, 54% of the region’s lakes have a pH
below 5.5 (Nierzwicki-Bauer et al. 2010). Addi-
tionally, the Park receives levels of nitrate (NO3

�)
and ammonium (NH4

+) deposition that are
among the highest in the northeastern United

States (McNeil et al. 2006). Although the Acid
Deposition Control Program of the Clean Air Act
Amendments (1990) has significantly reduced
acidic deposition (Driscoll et al. 2001), and the
land–water interface increasingly receives man-
agement attention, it can be presumed population
growth and increased tourism will intensify AIS
propagation. To end, it is likely that the greatest
threat to Park biodiversity comes from the ecosys-
tem dangers associated with IS.

MATERIALS AND METHODS

Aquatic invasive species richness
Monitoring programs for evaluating human

impacts on water resources have existed for dec-
ades, with a variety of measuring techniques
being applied to aquatic organisms as indicators
of biological integrity. Specifically, indicators of
aquatic integrity (i.e., Index of Biotic Integrity) are
commonplace for measuring impacts of human
activities and are used on six of the seven conti-
nents throughout the world (Roset et al. 2007).
Biological indices are considered robust tools for
investigating landscape–aquatic interactions (Karr
and Yoder 2004, Novotny et al. 2005), and they
can help diagnose causes of ecological impacts
and suggest appropriate management actions
(Karr and Chu 1999). These response indices, or
biotic assessment endpoints, provide the ecologi-
cal status (integrity) of the water body because
the biota captures the compounding stress found
within the interconnected ecosystem (Novotny
et al. 2005). Building on previous aquatic invasion
studies (i.e., Capers et al. 2007, 2009), this research
uses a fundamental biotic endpoint, AISR, as an
evaluation index of lake and landscape character-
istics. AISR was calculated by summing the
number of invasive plants or animals recorded
present within each of the 126 lakes from the
APIPP (2013) Annual Report.
Eleven aquatic invaders have continually been

monitored across the Adirondack Park since 2001.
The 11 AIS monitored are Asian Clam (Corbicula
fluminea), Brittle Naiad (Najas minor), Curly-leaf
Pondweed (Potamogeton crispus), Eurasian Water-
milfoil (Myriophyllum spicatum), European Frog-
bit (Hydrocharis morsus-ranae), Fanwort (Cabomba
caroliniana), Spiny Waterflea (Bythotrephes longi-
manus), Variable-leaf Milfoil (Myriophyllum hetero-
phyllum), Water Chestnut (Trapa natans), Yellow
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Fig. 1. Study area map of 126 lakes within the Adirondack Park region of New York, United States (43°56ʹ N,
74°23ʹ W).
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Floating Heart (Nymphoides peltata), and Zebra
Mussel (Dreissena polymorpha). Of the total sample
size lakes (N = 126), IS occurred in 66 of them; of
lakes with invasives, 45 had a single species, 15
had two, three had three, one had four, one had
five, and one had eight (Fig. 2). As of the 2013
report date, the only lake registering eight aquatic
invaders was Lake Champlain. AISR ranged from
0 to 8 species (mean � SE = 0.80 � 0.10) across
the 126 Adirondack lakes and followed a classic
Poisson distribution.

Lake and landscape characteristics
To develop and test predictive models, lake and

landscape information was compiled or created
from publicly accessible datasets (Data S1). Thirty-
one lake and landscape measures were obtained
directly, or through GIS processing of spatial

databases, from the APIPP, U.S. Census, DOT,
NYDEC, Sportsman’s Connection Fishing Guide
(SCFG), and the U.S. Geological Survey (USGS;
Table 1). Due to macroscale management and
database limitations across the study area lakes,
direct measures of chemical, geological, and bio-
logical parameters could not be included during
model development. That said, it is commonly
understood that measures of lake, landscape, and
land cover can serve as proxies because they are
inherently collinear with soils, sub-surface geol-
ogy, surface hydrology, aspects of groundwater
hydrology, and lake chemistry (see Wagner and
Fortin 2005, Dale and Fortin 2014, Turner and
Gardner 2015). Therefore, this research takes a
landscape ecology and macroscale spatial analysis
approach to fulfill its three guiding aquatic inva-
sive research objectives. For organizational pur-
poses, variables gathered and calculated can be
grouped as follows: (1) those that are impacting
human access or physical geography of the lake
and (2) landscape calculated variables of land
cover composition, configuration, and diversity.
Herein, these two broad groupings of modeling
variables are referenced as (1) lake characteristics
and (2) landscape characteristics.
Lake characteristics classified as continuous mea-

sures for predicting AISR were lake area, perime-
ter, perimeter/area ratio, maximum depth, surface
elevation, and Euclidean distance to nearest
invaded lake. Lake depth came from the most cur-
rent SCFG, while lake elevation was calculated
using a 10-m resolution digital elevation model
provided by the USGS. Ordinal variables were lake
access type and game fish abundance. Lake access
type was coded carry down only or public launch.
The abundance of game fish represents if yellow
perch, smallmouth bass, and rainbow trout were
found in the lake. These data were ordinally
summed to create game fish species richness,
and ranged from absent to all three species present
(0–3). Landscape characteristics were quantified from
the 2011 National Land Cover Database (NLCD)
for New York, which was released in the spring of
2014 for the state. The 2011 NLCD is a seamless
Landsat Thematic Mapper database preserving
30-m raster resolution of vegetation type, and was
designed for an array of topics such as assessing
ecosystem status and integrity, understanding spa-
tial patterns of habitat–biodiversity relationships,
interpreting climate change, developing land

Fig. 2. Poisson distribution of aquatic invasive spe-
cies richness identified in lakes according to the
Adirondack Park Invasive Plant Program (APIPP
2013) annual report: box plot displaying quartiles and
confidence diamond for mean value (A), frequency
histogram (B), and cumulative probability graph (C).
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Table 1. Lake and landscape data included in forthcoming statistical analyses (data are not transformed;
N = 126).

Variable Units/information Source Classification Min–max

Mean � SE, percentage of
lakes and landscapes

Invaded Non-invaded

AISR Sum of species
present

APIPP Ordinal 0–8 52% 48%

Lake area km2 NYDEC Continuous 0.2–1122.5 24.9 � 17.0 2.1 � 0.4
Lake perimeter km NYDEC Continuous 1.9–1037.4 45.0 � 16.2 13.4 � 1.8
Lake perimeter/area ratio km/km2 NYDEC Continuous 0.9–19.9 6.9 � 0.5 9.3 � 0.5
Maximum depth m NYDEC,

SCFG
Continuous 1.5–402.9 21.0 � 6.0 14.9 � 1.1

Lake surface elevation m USGS Continuous 28.9–651.7 415.8 � 15.4 496.0 � 7.0
Lake access type 1) Carry down only SCFG Ordinal 1, 2 24.2% 55%

2) Public launch km 75.8% 45%
Distance to nearest invaded
lake

km APIPP Continuous 1.2–32.1 6.8 � 0.6 10.4 � 0.8

Game fish abundance: yellow
perch, smallmouth bass,
rainbow trout

0) Absent SCFG Ordinal 0–3 1.5% 16.7%
1) One species 33.3% 45.0%
2) Two species 34.8% 31.7%
3) Three species 30.4% 6.6%

Distance to I-87 exit km DOT Continuous 2.6–116.8 54.7 � 3.4 64.4 � 3.2
Distance to nearest populated
place

km CENSUS Continuous 0.2–13.6 3.6 � 0.2 3.2 � 0.3

Land cover composition† Percentage of total
landscape area

USGS Continuous

Developed, open space (DO) % 0–26.0% 4.3% � 0.6% 2.5% � 0.3%
Developed, low intensity % 0–6.9% 0.7% � 0.2% 0.2% � 0.1%
Developed, medium intensity % 0–4.4% 0.4% � 0.1% 0.1% � 0.02%
Deciduous forest % 0–60.6% 19.9% � 1.6% 25.1% � 1.7%
Evergreen forest (EF) % 1.2–60.6% 17.4% � 1.4% 23.0% � 1.7%
Mixed forest % 0–32.9% 5.9% � 0.8% 4.7% � 0.4%
Pasture/hay % 0–3.5% 0.1% � 0.1% 0.1% � 0.1%
Cultivated crops % 0–1.1% 0.1% � 0.03% 0.01% � 0.01%
Woody wetlands % 0–25.3% 3.4% � 0.5% 3.6% � 0.6%
Emergent herbaceous
wetlands

% 0–14.3% 0.7% � 0.2% 0.9% � 0.3%

Land cover class
configuration†

USGS Continuous

AI, DO % 0–86.7% 52.7% � 2.4% 41.8% � 3.5%
AI, EF % 54.1–90.9% 75.2% � 0.7% 76.8% � 0.9%
PLADJ, DO % 0–81.2% 48.3% � 2.3% 36.7% � 3.2%
PLADJ, EF % 48.5–88.5% 72.7% � 0.8% 73.7% � 1.0%
AREA_AM, DO m2 0–55.83 6.6 � 0.9 4.2 � 1.1
AREA_AM, EF m2 0.96–135.01 25.4 � 3.2 24.5 � 3.3
ENN_AM, DO m 0–5480.8 198.4 � 82.7 85.8 � 12.6
ENN_AM, EF m 13.5–456.1 108.6 � 7.7 113.8 � 8.5
Landscape diversity† USGS Continuous
RPR % 25–93.8% 62.2% � 1.8% 51.4% � 1.7%
SHDI SHDI ≥ 0,

without limit
0.81–2.01 1.40 � 0.03 1.41 � 0.03

SHEI 0 ≤ SHEI ≤ 1 0.29–0.94 0.62 � 0.01 0.69 � 0.01

Notes: AISR, Aquatic invasive species richness; APIPP, Adirondack Park Invasive Plant Program; CENSUS, U.S. Census;
DOT, Department of Transportation; NYDEC, New York State Department of Environmental Conservation; SCFG, Sportsman’s
Connection Fishing Guide; USGS, U.S. Geological Survey; AI, aggregation index; PLADJ, percentage of like adjacency;
AREA_AM, area-weighted mean patch area; ENN_AM, area-weighted mean Euclidean nearest neighbor distance; RPR,
relative patch richness; SHDI, Shannon’s diversity index; SHEI, Shannon’s evenness index.

† Landscapes assessed using a 300-m riparian zone for each lake. See Leit~ao et al. (2006) and McGarigal et al. (2012) for
landscape metric details and equations.
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management policy, and combating negative
anthropogenic influences (i.e., IS propagation).
Regarding the accuracy of 2011 NLCD, previous
assessments on the 2001 release put Anderson
Level I classification at 85% and Anderson Level II
at 79% correct (Wickham et al. 2010). The 2011
NLCD was designed with 16 land cover classes;
however, 15 land cover types were present across
the study area lakes. To assess the landscape–water
interface (“lake–landscape”), and building from
previous research (i.e., Alberti et al. 2007), a 300-m
buffer was used to capture the landscape dynamics
of each lake’s riparian zone.

Land cover composition, urban and forest class
configuration, and landscape diversity measures
were quantified using the free landscape ecology
software FRAGSTATS version 4.2 (McGarigal
et al. 2012). The following 10 land cover composi-
tion metrics were relevant across all 126 study
area lakes: open space developed, low intensity
developed, medium intensity developed, decidu-
ous forest, evergreen forest, mixed forest, pas-
ture/hay, cultivated crops, woody wetlands, and
emergent herbaceous wetlands. Landscape ecol-
ogy scientists have developed a plethora of met-
rics for quantifying landscape patterns and
diversity, and their impacts on disturbance
regimes (Sun et al. 2007, McGarigal et al. 2012,
Turner and Gardner 2015). Based on literature rel-
evance within previous landscape–aquatic eco-
logical research, the following four land cover class
configuration metrics were applied to both devel-
oped open space and evergreen forest: aggrega-
tion index, percentage of like adjacency (PLADJ),
area-weighted mean patch area (AREA_AM),
and area-weighted mean Euclidean nearest
neighbor distance. Aggregation index equals the
number of like adjacencies involving the corre-
sponding developed or forest class, divided by
the maximum possible number of like adjacencies
of that class type. Percentage of like adjacency
equals the sum of the number of like adjacencies
for developed or forest class type, divided by the
total number of cell adjacencies in the landscape,
multiplied by 100 (to convert to a percentage).
Area-weighted mean patch area (area-weighted
mean) equals the sum of all developed or forest
class type areas, multiplied by the proportional
abundance of the patch (i.e., patch area divided
by class area). Area-weighted mean Euclidean
nearest neighbor distance (area-weighted mean)

is perhaps one of the simplest measures of devel-
oped or forest patch isolation, equals the average
Euclidean distance of nearest corresponding patch
neighbor, and increases without limit. Three land-
scape diversity measures included in this study were
relative patch richness (RPR), Shannon diversity
index (SHDI), and Shannon evenness index
(SHEI). Relative patch richness is the summation
of land cover types present within the landscape
boundary, divided by the maximum number of
types specified by the user (i.e., 16), multiplied by
100 (to convert to a percentage). The Shannon
indices are perhaps the most widely used diver-
sity measures for quantifying landscape pattern
diversity, and are based on information theory.
The definitions for the class configuration and
landscape diversity metrics were adopted from
Leit~ao et al. (2006) and McGarigal et al. (2012).

Statistical analyses
To accomplish the three objectives of this study,

a spatial analysis was constructed to assess the
geographic distribution of AISR across the
Adirondack Park, and test relationships between
lake and landscape characteristics and AISR. This
method was accomplished using a four-step pro-
cess. To meet the requirements for parametric
tests, non-normally distributed parameters were
transformed when required. The Shapiro–Wilk
normality test was used to establish whether
transformation was required, and which mathe-
matical function helped to reach a Gaussian fre-
quency. The independent variables used during
the forthcoming multiple regression models were
standardized using a z-transformation to set all
parameters to a mean of 0 and variance of 1.
First, the level of global spatial autocorrelation

for all variables, and a “hot spot” analysis of
AISR, were conducted using Getis-Ord General
G and Getis-Ord Gi�, respectively (Getis and Ord
1992). Getis-Ord Gi� is classified as a local index
of spatial association (LISA) test. When investi-
gating IS over geographic extents, it is essential
to take into account spatial autocorrelation. The
first law of geography states that things near in
space are more similar (spatially autocorrelated)
than things that are farther apart (Tobler 1970).
The Getis-Ord non-stationarity assessments were
made using ESRI’s ArcGIS 10.2 Spatial Analyst
Tools (ESRI 2014). For both the global General G
and local Gi� tests, the distance threshold of
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50 km was deemed statistically appropriate
using the Incremental Spatial Autocorrelation
tool in ArcGIS. Spatial autocorrelation index
scores differ from each other; however, positive
scores denote similar values are spatially clus-
tered and negative scores denote unlike values
are spatially distributed (Wong and Lee 2005).
Both global and local Getis-Ord statistics provide
z-scores and P-values, indicating whether fea-
tures are significantly clustered (global) and
where those values patterns are located (local).
For statistically significant positive z-scores, the
larger the z-score, the greater the clustering of
high values (hot spot); for negative z-scores, the
smaller the z-score, the greater the clustering of
low values (cold spot; ESRI 2014). Global-level
spatial autocorrelation was assessed for AISR
and all 31 lake and landscape explanatory vari-
ables (Table 2). The Gi� statistics allows each fea-
ture’s z-score to be illustrated, and was used to
display geographic “hot spots” and “cold spots”
of AISR across the study area lakes.

Second, a two-tailed Spearman’s rank (q) cor-
relation coefficient test (rs) was used to analyze
the relative strengths of relationships between
AISR and the 31 lake and landscape characteris-
tic variables for the 126 study area lakes
(n = 126). Spearman’s rank correlation coefficient
is a common statistic used for assessing collinear-
ity between two variables. This nonparametric
correlation coefficient test is appropriate for eval-
uating numerical collinearity of both continuous
and discrete values, including ordinal values
(Lehman 2005). Like other correlation coefficient
tests (i.e., Pearson’s), Spearman’s rank coefficient
ranges from 1 to �1, with values closer to 1 indi-
cating stronger bivariate association. A P-value
accompanies the Spearman’s rank correlation
coefficient to signify the relationship’s statistical
significance. The statistical package JMP (version
11; SAS 2013) was used during this step of the
research. Twenty-one lake and landscape predic-
tors had statistical significance bivariate correla-
tions with AISR (P < 0.05; Table 2).

Third, to help fulfill the second objective of this
study, a priori global multiple regression models
were developed using a multi-model selection
framework (Burnham and Anderson 2002, Diniz-
Filho et al. 2008). Since uncertainty remains
regarding which parameters would best predict
aquatic invasion, this study also evaluates different

lake and landscape conditions simultaneously
through multiple regression analysis. To reduce
the lake and landscape predictors into an indepen-
dent dataset, metrics that displayed a high degree
of collinearity (rs > 0.75) were eliminated using a
bivariate correlation matrix. When statistical
redundancy occurred between two predictors, the
variable with the best bivariate correlation with
AISR, numerical distribution, and literary justifica-
tion was kept. The remaining 17 lake and land-
scape variables were combined to create all
conceivable ordinary least-squares (OLS) regres-
sion models (i.e., 131,071) for predicting AISR. As
stated earlier, the dependent variable follows a
Poisson distribution so it was log10-transformed to
meet its Gaussian distribution assumption and
thus improve the accuracy duringmodel selection.
This technique calculates the Akaike weight (wi) of
each model; wi is an Akaike information criterion
(AIC)-derived index that scores the probability
that model i is truly the best predictive model
among all possible models (Terribile et al. 2009).
The final multiple regression models were then
entered into a Poisson multiple regression statisti-
cal framework.
Poisson regression was deemed appropriate as

it is regarded as a more appropriate method for
analyzing compounding rare events, such as lakes
having more and more aquatic invaders. Top mod-
els were compared and ranked based on their cor-
rected Akaike information criterion (AICc) and
coefficient of determination (R2). Corrected AIC
has been considered a preferred measure of model
fit (see Akaike 1978, Fotheringham et al. 2003).
Fotheringham et al. (2004) have suggested the
lower the AICc value, the closer the model approx-
imates reality; however, a “serious” discrepancy
between two models is when AICc values differ by
at least three. To evaluate potential multicollinear-
ity issues, the variance inflation factor (VIF) was
also calculated. VIF > 10 indicates definite prob-
lems of multicollinearity; VIF > 2.5 indicates
potential areas of concern. Lastly, the Shapiro–
Wilk normality test was used to assess model
residual independence and assure randomly dis-
tributed errors. Ultimately, five a priori global mul-
tiple regression models were chosen for use in the
final step of the spatial analysis (Table 3).
Fourth to complete the second and third objec-

tives of this study, GWR (Fotheringham et al.
2003) was used to evaluate non-stationarity of
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local relationships and prioritize lakes at risk to
aquatic invasion. Traditional global regression
methods (i.e., OLS) should only be used when
the assumptions of spatial randomness and loca-
tion independence can be met. These conditions
are usually not met during regional-scale studies
of environmental variables (i.e., land cover),

because their distributions are not uniformed
over space and usually correspond with their
underlying foundation (i.e., soil, geology; King
et al. 2005, Wagner and Fortin 2005, Dale and
Fortin 2014). When these assumptions of spatial
data homogeneity are not met, there is a greater
likelihood for type I errors (Dormann et al. 2007)

Table 2. Global spatial autocorrelations for all study variables using Getis-Ord General G analysis; Spearman’s
rank (q) correlation coefficients between aquatic invasive species richness (AISR) and all independent lake and
landscape measures.

Variable Observed general G z-Score P Spearman’s q Prob. > |q|

Dependent variable
AISR 0.009 2.707*** 0.007
Lake and landscape variables
Lake area 0.005 �0.777 – 0.437 0.368 <0.001
Lake perimeter 0.006 �1.581 – 0.114 0.342 <0.001
Lake perimeter/area ratio 0.008 2.702*** 0.007 �0.298 <0.001
Maximum depth 0.008 �0.420 – 0.675 0.014 0.880
Lake surface elevation 0.008 8.671*** <0.001 �0.433 <0.001
Lake access type 0.008 2.905*** 0.004 0.281 0.001
Distance to nearest invaded lake 0.008 0.995 – 0.320 �0.282 0.001
Game fish abundance: yellow perch,

smallmouth bass, rainbow trout
0.008 �0.145 – 0.885 0.375 <0.001

Distance to I-87 exit 0.009 10.846*** <0.001 �0.268 0.002
Distance to nearest populated place 0.008 �0.482 – 0.630 0.184 0.038
Land cover composition†
Developed, open space (DO) 0.011 5.671*** <0.001 0.232 0.009
Developed, low intensity 0.011 2.686*** 0.007 0.354 <0.001
Developed, medium intensity 0.009 0.839 – 0.401 0.451 <0.001
Deciduous forest 0.009 4.311*** <0.001 �0.268 0.003
Evergreen forest (EF) 0.009 8.129*** <0.001 �0.195 0.029
Mixed forest 0.009 4.090*** <0.001 �0.013 0.889
Pasture/hay 0.021 3.128*** 0.002 0.223 0.012
Cultivated crops 0.026 4.359*** <0.001 0.287 0.001
Woody wetlands 0.009 1.325 – 0.185 0.060 0.508
Emergent herbaceous wetlands 0.005 �2.145** 0.032 0.168 0.060
Land cover class configuration†
AI, DO 0.008 2.938*** 0.003 0.206 0.021
AI, EF 0.008 3.421*** <0.001 �0.129 0.151
PLADJ, DO 0.008 2.958*** 0.003 0.273 0.002
PLADJ, EF 0.008 3.031*** 0.002 �0.075 0.407
AREA_AM, DO 0.010 3.639*** <0.001 0.315 <0.001
AREA_AM, EF 0.009 3.627*** <0.001 0.050 0.582
ENN_AM, DO 0.008 �0.127 – 0.899 0.064 0.476
ENN_AM, EF 0.008 2.897*** 0.004 �0.058 0.522
Landscape diversity†
RPR 0.008 �2.753*** 0.006 0.388 <0.001
SHDI 0.000 �1.691* 0.091 �0.012 0.898
SHEI 0.008 2.999*** 0.003 �0.283 0.001

Notes: AI, aggregation index; AREA_AM, area-weighted mean patch area; ENN_AM, area-weighted mean Euclidean near-
est neighbor distance; PLADJ, percentage of like adjacency; RPR, relative patch richness; SHDI, Shannon’s diversity index;
SHEI, Shannon evenness index. Symbol designations: – random spatial pattern; �<10% chance random pattern; ��<5% chance
random pattern; ���<1% chance random pattern. Spatial clustering was determined using a threshold distance of 50 km. A
Spearman’s correlation coefficient in boldface depicts a statistically significant relationship above the 95% confidence level.

† Landscapes assessed using a 300-m riparian zone for each lake.
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or a shift in regression coefficients (Bini et al.
2009). Geographically weighted regression, a
refinement to traditional regression methods, uti-
lizes a distance decay-weighted philosophy that
explicitly deals with the spatial non-stationarity
of empirical relationships (Fotheringham et al.
2004). Geographically weighted regression uses a
spatial drift method by employing a series of
locally linear regressions to produce estimates
for every sample location through a moving win-
dow selecting information from nearby observa-
tions (Fotheringham et al. 2003). Thus, GWR
models are not suitable for extrapolation beyond
the region in which they were established; how-
ever, they are locally more appropriate for
descriptive and predictive purposes (Foody
2003). Lastly, according to Kupfer and Farris
(2007), GWR has the ability to reduce errors
caused by spatial autocorrelation during model-
ing analyses.

To date, most modeling research conducted
on aquatic invasion has used global statistical
methods (i.e., OLS), which do not allow for
understanding how local inferential relationships
change over space. Thus, GWR was used herein
to determine whether there was significant spa-
tial non-stationarity in the relationships between
lake and landscape characteristics and AISR. The
five previously established global multiple
regressions were recalculated using GWR model-
ing methodology. Specifically, GWR herein was
undertaken using a bi-square spatial weighting
with optimization using The Golden Section
Search, searching from 10% to 99% of neighbors
for kernel bandwidth by minimizing the AICc.
Next, the popular global Moran’s I test (Moran
1950) was used to assess the level of spatial auto-
correlation of model residuals for each of the five
GWR models. Additionally, spatial correlograms
were used to evaluate spatial errors associated

Table 3. Poisson regression modeling results, standardized coefficients, and individual P values of independent
variables significantly related to aquatic invasive species richness (AISR) across 126 lakes within the Adiron-
dack Region of New York for 2013.

Statistical measures and
independent variables

Models

Model 1 Model 2 Model 3 Model 4 Model 5

Statistical measures
AICc 112.816 123.765 119.627 114.735 113.848
Pseudo-R2 0.665 0.567 0.537 0.658 0.649
VIF max value 1.628 1.937 1.076 1.693 1.669
Independent variables
Poisson regression standardized constant 0.000*** 0.000**** 0.000**** 0.000** 0.000***
Lake and landscape
Lake area 0.495**** – – 0.516**** 0.449****
Max depth of lake �0.300*** – – �0.244** �0.267***
Lake surface elevation �0.216*** �0.241**** – �0.238*** �0.190**
Distance to nearest invaded lake �0.407**** �0.259*** �0.399**** �0.426**** 0.389****
Distance to nearest highway exit (I-87) �0.228*** – �0.305**** �0.265**** �0.230***
Distance to nearest populated place – – 0.222** – –
Land cover composition†
Percent deciduous forest – �0.246** – – –
Percent developed, open space 0.222** – – – –
Percent developed, low intensity – 0.205** – – 0.185**
Percent evergreen (coniferous) forest – �0.223* – – –
Landscape diversity†
RPR – – 0.513**** – –
SHDI – – – 0.185* –

Notes: AICc, corrected Akaike information criterion; VIF, variance inflation factor; RPR, relative patch richness; SHDI, Shan-
non’s diversity index. Land cover-derived variables from the 2011 National Land Cover Database (USGS 2014). Dash, –, indicate
no relation observed. Covariate values are Poisson regression standardized coefficients. Independent model variables have been
transformed to meet normality.

† Associated variables calculated using a 300-m riparian zone landscape for each lake.
*P < 0.10, ��P < 0.05, ���P < 0.01, ����P < 0.001.
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with AISR, estimated AISR, and GWR model
residuals. Once non-stationarity was established,
and model fitness confirmed, local regression
statistics and parameter estimates were mapped.
Lastly, the predicted estimates from the five
GWR models were summed and used to rank
currently non-invaded lakes most at risk to inva-
sion. The GWR models were created using the
free and publicly available software Spatial Anal-
ysis in Macroecology (version 4), which was
designed specifically to address spatial data
needs found naturally in macroecological and
biodiversity data (Rangel et al. 2010).

RESULTS

Patterns of lake and landscape characteristics
Taking all 126 study area lake–landscapes into

account, Getis-Ord General G analysis revealed a
degree of statistically significant global spatial
autocorrelation for 22 of the 31 lake and landscape
explanatory characteristics (Table 2). Specifically,
20 of the lake and landscape variables had geo-
graphic patterns with less than 1% chance of
occurring randomly. The response variable’s
(AISR) spatial distribution also had a very low sta-
tistical probability of occurring randomly, with a
Getis-Ord General G score and z-score of 0.009
and 2.707, respectively. When examining the local
distribution of AISR across the 126 lakes of the
Adirondack Region of New York, Getis-Ord Gi�

statistic displayed four statistically significant hot
spots and one cold spot (Fig. 3). The most signifi-
cant hot spot, at the 1% level, stretched from Lake
Champlain south to Hadlock Pond along the east-
ern side of the Park on the I-87 corridor, and
includes Lake George. At the 5% level, in the
1932/1980 Winter Olympic region of the Park, an
aquatic invasive hot spot focused around Kiwassa
Lake and includes Saranac Lake (Lower), Oseetah
Lake, Lake Flower, First Pond—Saranac River,
and Second Pond—Saranac River. Two marginally
significant hot spots, at the 10% level, are found
within the Park: One focused on Great Sacandaga
Lake in the south and one at Chateaugay Lake
(Upper) in the north. The statistically significant
cold spot focused at Jones Pond, in the central part
of Franklin County, and stretched from Lake
Kushaqua on its northeast end to Hoel Pond on
its southwest end. The LISA analysis divulged a

conflicting region between compounding aquatic
invaders and more pristine water resources within
Franklin County. Lastly, based on the hot spot
analysis, the I-87 interstate corridor (locally
known as the Northway) should continue to be a
region of focus for managing AIS.

Correlation coefficient analysis
Statistically significant bivariate relationships

between AISR as the dependent variable and 21
lake and landscape explanatory variables were
found using Spearman’s rank (q) correlation coef-
ficient test. Of the 21 significant predictors of
aquatic invasion, nine were grouped into lake
and landscape variables, seven were land cover
composition measures, three were developed
class configuration metrics, and two were land-
scape diversity measures (Table 2). Human set-
tlements and their activities related to freshwater
recreation are the main propagators of IS for the
lake–landscapes evaluated. Higher lake surface
elevation and an increased forest proportion
within the lake–landscape suppress aquatic
invaders. The two strongest positive lake and
landscape predictors of AISR were abundance of
game fish (rs = 0.38, P < 0.001) and lake area
(rs = 0.37, P < 0.001), while the two strongest
negative were lake surface elevation (rs = �0.43,
P < 0.001) and distance to nearest invaded
lake (rs = �0.28, P = 0.001). The two strongest
positive land cover composition measures were
percent medium intensity developed (rs = 0.45,
P < 0.001) and percent low intensity developed
(rs = 0.35, P < 0.001), while the two strongest neg-
ative were percent deciduous forest (rs = �0.27,
P = 0.003) and percent evergreen forest (rs = �0.20,
P = 0.029). There were no negative class configu-
ration metrics significantly correlated with AISR;
however, the two strongest positive associations
with aquatic invasion were developed open
space of AREA_AM (rs = 0.32, P < 0.001) and
PLADJ (rs = 0.27, P = 0.002). There was one posi-
tive landscape diversity predictor of AISR, which
was RPR (rs = 0.39, P < 0.001). Conversely, SHEI
was the only negative landscape diversity predic-
tor of AISR (rs = �0.28, P = 0.001). The correla-
tion coefficient analysis clearly indicated that
aquatic invasion is impacted by both natural and
human-dominated lake and landscape condi-
tions across the Adirondack Park.
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Fig. 3. Hot spot analysis of aquatic invasive species richness across the 126 study area lakes using Getis-Ord
Gi� statistic. The threshold distance parameter was determined within this study and set to 50 km, and spatial
weights were standardized by row.
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Global and local multiple regression
The multi-model selection framework pro-

duced five Poisson multiple regression models
for predicting AISR across 126 Adirondack
lake–landscapes (Table 3). The multi-model explo-
ratory analysis eliminated five of the 17 indepen-
dent lake and landscape predictors. Twelve
explanatory variables were used across the five
different global regression models to explain
between 54% and 67% of AISR variation as
expressed by pseudo-R2 values. Based on AICc

scores, Model 1 (AICc = 112.82) was the best-
fitting model for predicting aquatic invasion,
followed by Model 5 (AICc = 113.85). Variance
inflation factor magnitudes ranged between 1.08
and 1.94 for the multiple regression models; thus,
errors associated with multicollinearity among
covariates were virtually nonexistent. Model 3
used four independent predictors; Model 2
incorporated five independent variables; the other
three models incorporated six independent
parameters. The Shapiro–Wilk normality test
revealed numerical independence of residuals,
thus assuring randomly distributed errors for the
five regression models. The five distinct models
allowed for a separation of independent lake and
landscape conditions for understanding their
influence on aquatic invaders.

The multiple regression models clearly indicate
that the lake and landscape conditions are good
predictors of AISR. Based on the multiple regres-
sion analysis, distance to the nearest invaded lake
should be considered the most important predic-
tor of aquatic invasion. When combined with
other independent variables, the distance to the
nearest invaded lake was the only constant pre-
dictor of AISR across all five models; this covari-
ate had an expected negative association and was
significant at the 99% level for all five models. The
distance between the nearest I-87 interstate exit
and lake was the second most important parame-
ter for predicting AISR based on four models rep-
resented and their covariate significance level.
This covariate had a negative association and was
significant at the 99% level for all four models.
The third most important predictor of AISR was
lake surface elevation, with covariate presence in
four models. Across the Adirondacks, lake surface
elevation had a negative association with AISR
and was significant at the 99% level for three
models and 95% level for one model. As expected,

lake area was found to be an important predictor
of AIS. This independent variable was found in
three of the five multiple regression models, and
recorded the strongest standardized beta coeffi-
cient for each. Lake area had a positive association
with AISR for all three models at the 99% signifi-
cance level. Maximum lake depth was present in
three models, had a negative association with
AISR, and was significant at the 99% level for two
models and at the 95% level for one model. The
proportion of the lake–landscape occupied by
low-intensity developed land cover was the last
parameter present in more than one model. This
covariate recorded positive association and statis-
tical significance at the 95% level for two models.
The following four parameters were positively
associated with AISR and appeared in one model:
distance to nearest populated place, percentage
developed open space, RPR, and SHDI. The
deciduous and coniferous forest percentages of
the lake–landscape were both negatively associ-
ated with AISR, and appeared in one multiple
regression model each.
Geographically weighted regression improved

overall model fitness and corroborated inferential
relationships established during the preceding
global Poisson multiple regression analysis for
predicting aquatic invasion across 126 Adiron-
dack lakes. When conducting local regression
analyses, it is important to note which indepen-
dent variables had non-stationarity. Of the 12
explanatory variables previously established for
the five different regression models, only lake
area, maximum lake depth, and distance to the
nearest populated place were spatially random.
Nine numerically independent lake and land-
scape predictors, and the response variable AISR,
were spatially dependent (non-stationary) based
on the preceding Getis-Ord General G analysis.
The five local regressions as modeled by GWR
explained between 76% and 83% of AISR varia-
tion (Table 4). The estimated and observed AISR
for 126 Adirondack lakes, estimated using GWR
with an adaptive kernel bandwidth selection for
minimizing AICc, showed a best-case-fitting per-
formance of 83% (Fig. 4). Based on GWR AICc

scores, Model 5 (AICc = 215.00) was the best-
fitting model for predicting aquatic invasion, fol-
lowed by Model 1 (AICc = 221.56). Based on the
adaptive kernel selection procedure, the number
of neighbors included in the GWR models ranged
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from 58 (45.72%) for Model 3 to 116 (91.85%) for
Model 2; albeit, Models 1, 4, and 5 all incorpo-
rated 89 (70.27–70.96%) neighbors. The median
values of all the local regression coefficients cor-
roborated those directional relationships estab-
lished between AISR and the lake and landscape
explanatory variables during the global Poisson
technique. The Moran’s I test revealed spatial
independence of residuals, thus assuring error
randomness for each unique regression model.
Overall, there was a 16% model improvement
when using the local regression method com-
pared to the global approach of this study.

A key benefit of using GWR is that variation
in model parameters can be mapped out geo-
graphically to help elucidate those inferential rela-
tionships through local pattern analysis. Using

Table 4. Geographically weighted regression parameter estimates for multiple regressions between lake and
landscape predictors and aquatic invasive species richness (AISR) across 126 lakes within the Adirondack
Region of New York for 2013.

Statistical measures and independent variables Model 1 Model 2 Model 3 Model 4 Model 5

Diagnostic statistics
AICc 221.560 241.128 271.290 222.701 214.998
R2 0.819 0.755 0.759 0.819 0.829
Adaptive kernel neighbors 70.769% 91.848% 45.718% 70.959% 70.265%
Sigma 0.270 0.344 0.384 0.270 0.255
Number of parameters 20.049 12.995 22.897 20.527 20.313
F 25.174 29.003 14.825 24.515 26.588
P value <0.001 <0.001 <0.001 <0.001 <0.001
Residuals global Moran’s I z-score 1.020‡ 0.948‡ �0.270‡ 1.319‡ 0.217‡
Local regression parameter descriptive statistics: (median)
Constant 0.635 0.739 0.564 0.669 0.653
Lake and landscape
Lake area 0.441 – – 0.454 0.413
Max depth of lake �0.245 – – �0.245 �0.223
Lake surface elevation �0.049 �0.389 – �0.067 �0.001
Distance to nearest invaded lake �0.326 �0.235 �0.341 �0.326 �0.328
Distance to nearest interstate highway exit (I-87) �0.117 – �0.421 �0.152 �0.114
Distance to nearest populated place – – 0.159 – –
Land cover composition†
Deciduous forest – �0.261 – – –
Developed, open space 0.107 – – – –
Developed, low intensity – 0.185 – – 0.175
Evergreen (coniferous) forest – �0.248 – – –
Landscape diversity†
RPR – – 0.356 – –
SHDI – – – 0.081 –

Notes: AICc, corrected Akaike information criterion; RPR, relative patch richness; SHDI, Shannon’s diversity index. Land
cover-derived variables from the 2011 National Land Cover Database (USGS 2014). Dash, –, indicate no relation observed. Inde-
pendent model variables have been transformed to meet normality, and standardized to set the mean at 0 and variance to 1.
Spatial autocorrelation of residuals was assessed using the established distance threshold of 50 km.

† Associated variables calculated using a 300-m riparian zone landscape for each lake.
‡ Spatial pattern was not significantly different from a random distribution.

Fig. 4. Observed vs. predicted plot for aquatic inva-
sive species richness as established by Model 5
(Table 4) from the geographically weighted regression
analysis.
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positive and negative 1.96 as the upper and lower
thresholds for significant, pseudo-t-statistics was
used to plot out where the relationship between
lake and landscape characteristics and AISR was
significant and positive, significant and negative,
and non-significant at the 95% confidence level.
Pseudo-t-statistics was used to present local
directionality of local estimated coefficients and
their corresponding local statistical significance
(a = 0.05) for the best-fitting GWR model. Those
values, along with local R2, and the standardized
residuals were mapped for Model 5 from the
GWR analysis (Fig. 5). Unlike global modeling
methods, the spatial pattern of coefficient of deter-
mination (R2) from the GWR model displayed
local variation; furthermore, Model 5 had values
ranging from 0.38 in the southwest part of the
Park to 0.90 along the eastern extent. The local

variation in model fitness supports that GWR
has the ability to better capture the spatial non-
stationarity associated with explaining aquatic
invasion.
Model 5 included two positive and four nega-

tive lake and landscape condition parameters for
explaining AISR. Based on the spatial distribution
of the local covariate lake area, it has the strongest
positive influence on AISR. Lake area remains
significant to aquatic invasion throughout the
Park, other than a zone of insignificance in the
southwest. The other positive predictor of AISR
was percent low-intensity developed land, but
the local association was only found statistically
significant at two lakes in the central part of the
Park. Based on the estimated local pattern of
distance to nearest invaded lake, it had the stron-
gest negative influence on AISR. The distance to

Fig. 5. Local R2 and standardized residuals of the geographically weighted regression (GWR) Model 5
(Table 4); spatial distribution of GWRModel 5 local pseudo-t-values (a = 0.05) for lake and landscape covariates.

 ❖ www.esajournals.org 17 March 2017 ❖ Volume 8(3) ❖ Article e01723

SHAKER ET AL.



nearest invaded lake was statistically significant
across all Park lakes at the 95% confidence level,
except for Lake George. The local estimate of lake
elevation had a statistically significant and nega-
tive influence on AISR for much of the eastern
half of the Park. Maximum lake depth and dis-
tance to the nearest I-87 exit were both negatively
associated with AISR, and their local estimates
were found statistically significant mostly in the
northern part of the Park. The differences in
observed vs. predicted AISR were visualized
through mapping the standardized residuals in
Fig. 5. An ex post facto assessment of Model 5
illustrated the spatial trends of AISR, estimated
AISR, and model residuals using Moran’s I correl-
ogram (Fig. 6A) and residual histogram (Fig. 6B).
Overall, GWR greatly improved the accuracy and
information gained for modeling aquatic invasion
across Adirondack Park lakes. Due to the model-
ing improvements from the GWR analysis, this
technique was deemed superior for predicting

future aquatic invasion. From the five GWRmod-
els, the predicted estimates of AISR were
summed and used to rank the top 20 non-invaded
lakes (Appendix S1: Table S1, Fig. S1). Corrobo-
rating the findings from the earlier univariate
“hot spot” analysis of AISR, the GWR summed
results suggest that Franklin County has the most
non-invaded waterways at risk to future aquatic
invasion.

DISCUSSION

Importance of explanatory variables
Accurately predicting patterns of aquatic inva-

sion requires an understanding of how physical
and human-created landscapes alter water
resources and thus dispersal, establishment,
growth, colonization, and spread of AIS. The
lake and landscape characteristics associated
with the presence of aquatic invaders in Adiron-
dack water bodies were linked to both natural

Fig. 6. Spatial correlogram of aquatic invasive species richness (AISR), estimated AISR value, and model resid-
uals for Model 5 (Table 4) from the geographically weighted regression (GWR) analysis (A); and frequency distri-
bution of GWRModel 5 residuals (B).
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and anthropogenic causes. Across the modeling
techniques, the most important natural factor
affecting the probability of a lake having more
aquatic invaders was lake elevation. The highest
elevations in the Park have surficial geology
dominated by igneous anorthosite rocks, under-
lain by metamorphic quartzites and marbles;
furthermore, sedimentary rocks (e.g., limestone,
shales, sandstones) are exposed sparsely at low-
est elevations around the periphery of the Park.
As with Nilsson and H�akanson (1992), the low
weathering rates of igneous and metamorphic
surficial and bedrock are likely not an important
determinant of water chemistry. Therefore, it is
deduced that the positive correlation between
lake elevation and AISR supports the dispersal of
aquatic invaders through natural flowage of
connected waterways in the Park. Additionally,
lake elevation likely captures driving behaviors
of recreational boaters, as higher and complex
topography decreases available transportation
routes and inevitably puts greater strain on auto-
mobiles towing small-craft boats.

The positive correlation between lake area and
AISR was expected, and the findings of this
study follow the species–area relationship found
commonplace in ecological literature. That being,
larger habitat areas (i.e., larger lakes) are more
likely to contain more species, and this relation-
ship has been supported mathematically across
numerous ecological studies. Landscape compo-
sition of deciduous and evergreen forest impacts
the level of dissolved carbon and associated
chemistry in lakes. Dissolved carbon, and its
impacts on lake alkalinity, has been documented
to inhibit invasive milfoil growth (see Buchan
and Padilla 2000). As Eurasian Watermilfoil and
Variable-leaf Milfoil are two of the most abun-
dant aquatic invaders within Adirondack water-
ways, the negative relationship between percent
forest covers and AISR was expected. Deeper
lakes were also negatively correlated with AISR;
this relationship suggests that most aquatic inva-
ders of this study are linked to photosynthesis
directly or indirectly in the photic zone. There-
fore, shallower water bodies have increased
littoral zone proportions and thus a higher
likelihood of invasive plants and animals. Lastly,
the distance to nearest invaded water body had
an anticipated consistent and negative explana-
tory variable of AISR and can be justified by the

first law of geography, connected hydrology, and
distance decay of traveling boaters.
Lake and landscape conditions associated with

greater human population, anthropogenic pres-
sures, and behavior were more dominant predic-
tors of aquatic invasion across the Adirondack
Park. From the modeling techniques employed,
the most important human-dominated parame-
ter impacting whether a lake will have more
aquatic invaders was percent urban land cover.
Specifically, increased human abundance-related
variables, and their connected modification and
metabolization of more natural land covers,
increase the likelihood of aquatic invaders.
Urbanization measures were consistently found
positively correlated with aquatic invasion, and
this relationship could be supported by salt and
petroleum-based runoff, residential fertilizer use,
and mowing disturbances; however, more likely
this significant relationship is capturing greater
population density and increased recreational
lake use. Three of the four urban land cover class
configuration metrics were significantly associ-
ated with AISR, based on the correlation coeffi-
cient analysis; however, none of the forest
configuration measures rendered a statistically
significant relationship. The urban configuration
results reveal that more tightly connected
developed lands are associated with higher AISR
values. Again, the interpretation is that the con-
figuration metrics are capturing greater popula-
tion density and increased recreational lake use.
The landscape diversity measures revealed that
lake–landscapes more mathematically diverse
(fragmented away from naturally contiguous)
and uniformed (human-made) render a water-
way to have a higher probability of aquatic inva-
ders. Landscape pattern analysis remains largely
absent from aquatic invasion research, but the
results herein suggest they are useful for helping
understand causal relationships. Lastly, from the
correlation coefficient analysis, the two agricul-
tural land covers cultivated crops and pasture/
hay were both statistically significant and posi-
tively associated with AISR. This relationship
was expected as soil nutrient-, nitrogen-, and
phosphorous-laden runoff increases eutrophica-
tion rates that help establish and support adapt-
able and tolerant aquatic invaders.
Recreational boating has been suggested to be

the greatest propagator of AIS (see Puth and Post
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2005, Rothlisberger et al. 2010), and many
explanatory variables of this study support this
hypothesis. The most consistent and important
recreational lake-use predictor across models
was the distance between the nearest I-87 exit
and a lake. As this Euclidian distance increases, a
simple proxy of travel-time and cost (distance
decay), less aquatic invaders are found present in
Adirondack lakes. Lake access type and abun-
dance of game fish were both positively corre-
lated with AISR, supporting that lakes with a
public boat launch and a greater variety of game
fish increase its probability of having more aqua-
tic invaders. The explanatory variable, distance
to nearest populated place, helps elucidate lake
choice by those recreational users. Across model-
ing techniques, distance to nearest populated
place had a positive relationship with AISR.
Adding to the impacts of lake access type, the
results suggest that recreational lake users prefer
waterways further away from populated places.
Perhaps this relationship captures Park visitors
lodging in campgrounds or other locations out-
side of urban landscapes. Not accepting spurious
correlations, the findings contrast the urban land
cover and associated greater population density
impacts on increased presence of aquatic inva-
ders. It is believed that these somewhat juxtapos-
ing associations have captured propagule
pressure from both long-term Park inhabitants
and more transient visitors. Since permanent
occupants and visitors likely impact aquatic
invasion differently, new research on this topic
could improve monitoring efforts, environmental
policy-making, and water resources manage-
ment across the Adirondack Park.

Management and modeling objectives
Choosing the best modeling method to predict

future aquatic invasion is largely contingent on
administration goals and financial constraints.
The Adirondack Park is a very unique environ-
mental management domicile, and its unique
coupled human–environment remains relatively
free of IS. Of the over 340 lakes that have been
surveyed in 2015, 70% are still free of AIS. In the
Adirondack Park, there is a landscape-level part-
nership of more than 30 cooperating partners
representing environmental, academic, advocacy,
municipal, industry, and resident groups, who
combined are called the APIPP to safeguard the

region from harmful impacts of IS. Adirondack
Park Invasive Plant Program has worked to pre-
vent new infestations by implementing innova-
tive spread prevention programs, such as boat
launch steward and boat wash programs at
strategic water access sites; enriching a region-
wide early detection network that uses profes-
sionals and volunteers to detect and report new
infestations; and managing established popula-
tions to mitigate their negative impacts. When
infestations are found, rapid response actions are
taken with the goal of eliminating the invaders
and preventing spread to any new location.
While AIS management in the Park focuses on
prevention and early detection/rapid response,
occasionally there are some AIS that become
established. These populations are often man-
aged long term through mechanical means such
as hand harvesting and benthic matting, which is
very costly and time-consuming.
Effective IS management and policy develop-

ment requires planning at the regional level,
setting near-, mid-, and long-term priorities,
albeit using adaptive management and working
with limited resources as efficiently as possible.
Despite a strong commitment by governmental
and non-governmental organizations, it remains
financially and logistically impossible to evaluate
all lakes within the Adirondack Park annually.
This means that aquatic invaders are likely to
propagate through waterways bypassed when
managers are required to prioritize monitoring
resources. Therefore, improving modeling meth-
ods that accurately predict which lakes are most
susceptible to invasion greatly aids in prioritiza-
tion and strategic placement of the limited
management resources. In example, spread pre-
vention programs (i.e., boat launch stewards,
boat wash stations) could be placed at high-risk
un-invaded lakes to ensure that watercraft enter-
ing remains free of invasives. Conversely, those
same prevention resources should be located at
invasion “hot spots” to inspect watercraft exiting
to prevent dispersal from these source areas. The
statistically significant lake and landscape vari-
ables of this study do not necessarily imply cau-
sative factors on aquatic invasion as a whole or
any specific species used to create AISR; how-
ever, their associations have been largely sup-
ported by the literature and deemed appropriate
for accomplishing the goals of this study.
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Building upon past research (i.e., Buchan and
Padilla 2000, Capers et al. 2009), this study pro-
pels aquatic invasion prediction forward by using
GWR. Geographically weighted regression mod-
els not only fit AISR variation better than the
global models, but also provided local informa-
tion regarding inferential relationships between
lake and landscape characteristics and AISR. That
said, Holt and Lo (2008) suggested that traditional
GWR has limits; it assumes spatial heterogeneity
for all variables, while some natural and human-
made processes test homogeneous (spatially
stationary or random). Additionally, traditional
GWR was designed for Gaussian-distributed
dependent and independent variables, which are
often not found in natural, ecological, or coupled
human–environmental systems. To address the
conventional GWR modeling limitations, Nakaya
et al. (2014) developed the GWR4 spatial analysis
software to include a semiparametric GWR frame-
work that combines locally varying and globally
fixed independent variables. Furthermore, besides
the conventional Gaussian models, GWR4 offers
the generalized linear modeling framework inclu-
ding geographically weighted Poisson and logistic
regression techniques. These new advancements
in spatial analysis methods will further improve
understanding of inferential relationships related
to IS. That said, local regression methods remain
case specific because they are contingent on sam-
ple size and locations, unique search radius, and
locally restricted mathematical expressions (spa-
tial weighting). Thus, GWR findings from this
study cannot be transferred wholesale to other
geographic locations; however, the methods used
and the new variants of GWR should be consid-
ered during future modeling and monitoring
efforts of invasion.

CONCLUSIONS

Landscape–aquatic ecosystems are highly
interconnected systems requiring knowledge,
information, and new methods to manage them
appropriately. This paper provides the first
macroscale study of aquatic invasion across the
Adirondack Park by fulfilling its three guiding
objectives. First, aquatic invaders were summed
for 126 lakes from the publicly available APIPP
(APIPP 2013) report. By doing so, AISR was cre-
ated as a biotic endpoint of aquatic invasion for

spatial analysis across the Adirondack Park.
Using Getis-Ord Gi� as a LISA (Getis and Ord
1992), “hot spots” and “cold spots” of AISR were
displayed. Second, alternative statistical models
were developed and compared to reveal which
lake and landscape characteristics were most
likely to support aquatic invaders, and to indi-
cate which parameters have the greatest predic-
tive power of AISR. Specifically, Spearman’s rank
(q) correlation coefficient test (rs), Poisson regres-
sion, and GWR were employed as modeling
tools within this research. Although spatial auto-
correlation was found and adjusted for, the infer-
ential relationships between lake and landscape
characteristics and AISR held true across global
and local methods. Third, GWR was used to
evaluate non-stationarity of local relationships
and to assess its use for prioritizing lakes at risk
to invasion. Spatial heterogeneity for six key
explanatory variables was illustrated from the
best-fitting GWR model. Summation of AISR’s
predicted estimates from the five GWR models
allowed for ranking the top 20 non-invaded lakes
at risk to future aquatic invasion, furthermore
prioritizing which lakes need to be monitored
more frequently.
The results inform that inexpensive and publi-

cly accessible lake and landscape data, typically
available from digital repositories within state
environmental management agencies, can be used
to develop predictions of aquatic invasion with
remarkable agreement. Additionally, using freely
available spatial analysis software, relatively
inexpensive tools with low rates of misclassifica-
tion for slowing the spread of aquatic invaders
were created through an applied example. The
lake and landscape characteristics found statisti-
cally significant to AISR are generally important
to the introduction, establishment, and spread of
aquatic invaders. The inferential findings from
this study contribute to the scientific, planning,
and management literature and can be general-
ized to similar landscapes of geography, climate,
and habitats. While other aquatic invasion studies
have investigated statistical associations with lake
and landscape parameters, few have attempted to
employ the statistical results to predict the spatial
variability of significant relationships. Besides the
lake and landscapes predictors used in this study,
lake-use statistics, measures of hydrogeology, lake
chemistry, riparian soils, substrate, native species,
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invader establishment time, habitat, and atmo-
spheric deposition of nitrate, ammonium, and
sulfate should be considered when available.
Additionally, more research remains for predict-
ing the presence of individual AIS using local
logistic regression. River connectivity and drai-
nage patterns (networks) impact dispersal of
aquatic invaders and thus need more spatial
analysis attention. Where data are available,
although a limitation for this study, predictions
should be validated using observed cases out-
side ones used to create the original statistical
models.

Overall, the variation in AISR across the
Adirondack Park is the result of both natural and
human-dominated landscape conditions. The
risk posed by aquatic invaders is expressed
through the complex interplay among three
factors: existence of a hazard, exposure to the haz-
ard, and vulnerability to adverse impacts once
exposed. The research presented here demon-
strates the capacity for using lake and landscape
patterns to effectively characterize risk due to the
interaction between hazard existence and expo-
sure. A fertile area for future work will be to
examine how vulnerability is inhibited or
enhanced by the internal ecological integrity of
lakes by incorporating additional data such as
aquatic native species richness and other limno-
logical factors for individual lakes. By exploring
aquatic invasion patterning across the Adiron-
dacks, and its correlations with common lake
and landscape characteristics, aquatic ecological
integrity, environmental management, conserva-
tion planning, and water resources policy can be
strengthened. In conclusion, studies like this one
help to improve humanity’s relationship with its
life-supporting ecosystems.
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