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Abstract 

Over the last several decades, cities in America’s Rust Belt region have experienced 

population and economic declines – most notably, the City of Detroit. With increased property 

vacancies, many residential structures are abandoned and left vulnerable to degradation. In many 

cases, one of the answers is to demolish the structure, leaving a physical, permanent change to the 

urban fabric. The following study uses freely available very high-resolution (VHR) aerial ortho 

photographs to perform a remote sensing analysis through the application of Geographic Object 

Based Image Analysis (GEOBIA) methods. The research successfully generates the distinction 

between pervious and impervious land cover, and links those to parcel lot administrative 

boundaries within the City of Detroit. Additionally, it explores potential challenges and solutions 

for batch classification when performing change detection analysis using different sensors at 

varying spatial resolutions in diverse areas within the city. 
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CHAPTER 1: Introduction 

1.1 Analysis of Urban Environments Through Remote Sensing 

Evaluation of urban conditions and the tracking of changes over time can be performed by 

ground surveys and visual inspection. These methods can be effective and accurate but can also 

be time consuming and labour intensive. A second method through which urban environments can 

be analysed is remote sensing, where ground features are observed from images captured overhead. 

Additionally, if a phenomenon is not directly recorded, remote sensing archival imagery can be 

used. Image collection through remote sensing falls into two main categories: airborne and 

spaceborne. Photographs of Paris were captured from a balloon in 1858—the earliest known 

example of airborne imagery, and publicly available spaceborne imagery was made available by 

Landsat-1 in 1972 (Blaschke et al., 2014). Medium resolution spaceborne imagery, such as 

Landsat, is effective in analyzing various land-use/land-cover (LULC) phenomenon in urban 

contexts (Forsythe and Waters, 2006; Sidhu et al., 2016). However, due to the density of features 

within the urban fabric, higher resolution imagery can display more nuanced information and 

discrete objects. The most basic analysis of remotely sensed imagery is by simple observation. 

While much information can be observed by the naked eye, the analysis of pixel spectral values 

can provide even more detail. For instance, vegetation can be delineated with the help of the red 

and near infrared (NIR) spectral values. Since the early 2000s, there has been increasing interest 

in developing new methodologies focusing on analyzing groups of homogeneous pixels, rather 

than performing pixel by pixel analysis (Hossain and Chen, 2019). This is known as geographic 

object-based image analysis (GEOBIA), where analysis is performed on objects composed of 

multiple pixels. Once the spatial resolution of the image displays objects made up of multiple 

pixels, the ability to conduct analysis pixel by pixel emerges (Blaschke et al., 2014). Machine 
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learning (ML) algorithms such as random tree (RT) and support vector machine (SVM) have been 

used as classifiers, paving the way for the automation of GEOBIA processes. The combination of 

higher resolution imagery for analyzing urban environments and the promising potential of 

GEOBIA make a strong argument for the use of these methods for urban environment analysis. 

 

1.2 Urban Shrinking Phenomenon 

 In 2018, the United Nations Department of Economic and Social Affairs estimated the 

global urban population to be 55% and on track to reach 68% by 2050. North America had the 

highest percentage of urban dwellers, reaching 82% of the total population (United Nations, 

Department of Economic and Social Affairs, Population Division, 2019). Despite the increasing 

percentage of urban dwellers, this phenomenon does not translate to uniform urban growth and 

development. Certain regions and communities experience what is called ‘urban shrinking’, where 

there is population decline that often happens in parallel with economic decline. Since the 1950s, 

about half of America’s largest cities have experienced population declines (Hollander, 2011, as 

cited in Hartt, 2018). According to Thompson and de Beurs (2018), many shrinking cities in the 

United States are located within the Rust Belt, where property vacancy rates reached 50% in 2012 

(Burkholder, 2012). The Rust Belt region is situated in the Great Lakes watershed (Deng and Ma, 

2015). However, there is no formal administrative boundary identifying the region. Figure 1.1 

displays an informal boundary based on analysis of characteristics by Thompson and de Beurs 

(2018). 
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Figure 1.1: Rust Belt region, based on analysis by Thompson and de Beurs (2019). 
 

1.3 Research Objectives 

 The purpose of this study is to test the feasibility of using open-source airborne imagery 

for detection of changes in shrinking urban environments—specifically, demolished residential 

structures in Detroit. Shrinking urban areas may lack quality parcel data (Deng and Ma, 2015), 

and in many cases, parcel lot vacancy statistics are not available (Biron, 2022). Acquiring imagery 

from high-resolution commercial satellites for a city-wide analysis can be prohibitively expensive 

(Thompson and de Beurs, 2018). This study aims to build upon GEOBIA methodologies such as 

image segmentation and object classification and develop a semi-automated method for analysis 
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of large urban areas captured via different sensors, and at different times. The method is then tested 

as a proof of concept on three levels of change due to demolition rates: high, median, and low. The 

research questions are: 

(a) What are the optimal image segmentation parameters for delineating surfaces under 

shadows in this study? 

(b) What is the effectiveness of developing a segmentation and classification method and 

applying it to different areas of Detroit? 

(c) Does the same method produce appropriate results when applied to imagery from different 

dates, sensors, pixel resolutions, and spatial locations for the purpose of repeatability? 

(d) Can accurate parcel lot classification occur? What valuable information can be extracted 

with the achieved change detection accuracy?  
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CHAPTER 2: Literature Review 

2.1 Geographic Object-Based Image Analysis 

2.1.1 Origins 

Fields such as computer vision, material sciences and biomedical imaging use object-based 

image analysis (OBIA) methodologies (Blaschke, 2010). Hay and Castilla (2008) stress the 

importance of distinguishing spatial applications of OBIA and calling it geographic object-based 

image analysis (GEOBIA) when applied to remote sensing. OBIA concepts have been present in 

research since the 1980s, but not widely used in geographic research until the early 2000s 

(Blaschke, 2010). The advancement of high-resolution imagery in combination with off-the-shelf 

OBIA software led to interest in GEOBIA applications for various research questions (Blaschke, 

2010). Launched in 2000, eCognition was the first commercially available GEOBIA software, and 

remains popular among researchers to this day (Ma et al., 2016; Mendiratta and Gedam, 2018; 

Maxwell et al., 2019; Norman et al., 2021; Toney et al., 2012; Yen et al., 2020). One of the driving 

forces that encouraged the development of GEOBIA research was to provide a method for 

analyzing high resolution imagery (Lang, 2008 cited in Hossain and Chen, 2019; Mendiratta and 

Gedam, 2018; Johnson and Ma, 2020). Johnson and Ma (2020) also highlight the spread of 

GEOBIA applications to low and medium resolution research, suggesting greater potential for the 

method across different research applications.  

 

2.1.2 Components of GEOBIA 

 Classification applications through GEOBIA have the following components: “(a) image 

segmentation, (b) object hierarchy development (based on training data set), and (c) classification” 

(Hussain et al., 2013).  
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The first step is segmenting the image into image-objects. This is arguably the most 

important element, as it determines the quality and accuracy of the analysis (Johnson and Ma, 

2020). Commercially available software such as eCognition and CATALYST Professional’s 

Object Analyst perform multiresolution segmentation (MRS), using multiple parameters to 

influence the segmentation output. MRS uses scale, shape, and compactness as parameters 

(Norman et al., 2021), to define the desired outcome of the image-objects when segmenting the 

image. Scale represents the size of the desired objects, the shape is a weight metric that is inversely 

proportional to the importance of the pixel value, and compactness represents the weight metric 

which determines how compact the desired objects will be (Maxwell, 2010). Additionally, there 

is an option within Object Analyst to select one or more of the channels on which the segmentation 

is performed. Within segmentation algorithms, the scale impacts the size of the segmented objects 

(Hussain et al., 2013). However, objects appear differently when displayed with different 

resolutions, making it challenging to predict the proper scale in advance (Blaschke, 2010). The 

question of what scale is appropriate for what object is yet to be answered (Hossain and Chen, 

2019). Maxwell et al. (2019) indicates that scale is the most significant of the three parameters. 

Classification of segmented image-objects can be either unsupervised, such as K-Means clustering, 

or supervised, where training is required and algorithms, like RT and SVM, are used.  

 

2.1.3 Object-Based Change Detection 

 Change detection can be described as “the process of identifying differences in the state of 

an object or phenomenon by observing it at different times” (Singh, 1989). Object-based methods 

extend this definition to “the process of identifying differences in geographic objects at different 

moments using object-based image analysis” (Chen et al., 2012). Hussain et al. (2013) describe 
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three object-based change detection (OBCD) techniques: direct object change detection, classified 

objects change detection, and multitemporal/multidate-object change detection. Direct object 

change detection refers to comparing objects’ boundaries and/or the attribute values within the 

object’s boundary. Classified objects change detection is the practice of classifying objects into 

classes, which can later be used for from-to comparison. Finally, multitemporal/multidate-object 

change detection incorporates stacks of images in the method. Urban objects have discrete 

boundaries, making OBCD techniques appropriate for urban change detection (Chen et al., 2012). 

 

2.1.4 Advantages and Disadvantages 

 Image analysis in remote sensing is traditionally performed with pixel-based methods 

(Wang et al., 2018). With GEOBIA, the classification is performed on the properties of the objects, 

rather than individual pixels (Toney et al., 2012). Image-objects can contain statistical values of 

the spectral properties, as well as geometrical attributes such as rectangularity, circularity, and 

elongation. Performing classification of image segments over individual pixels is commonly cited 

as improving the salt and pepper effect, where pixels are misclassified and appear as specks in 

incorrect classes. Mendiratta and Gedam (2018) demonstrated the reduction of the salt and pepper 

effect in a medium resolution urban analysis, and multiple review articles indicated the potential 

for the issue to be resolved by GEOBIA (Blaschke, 2010; Hussain et al., 2013). The second often-

cited benefit of GEOBIA over pixel-based approaches is the generation of vector data (Blaschke, 

2010), which can be more easily integrated with other vector types of data for further geographic 

information analysis. Discrete objects are especially “useful for thematic mapping and change 

detection” (Hussain et al., 2013). The third advantage of GEOBIA over pixel-based approaches is 

particularly important when performing time series analysis with very high-resolution imagery. 
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There is a risk of pixel mis-registration when using very high resolution (VHR) imagery and 

classifying multiple pixels as an object can reduce the error impact (Maklea and Pekkarinen, 2001, 

cited in Chen et al., 2012). The first disadvantage of using GEOBIA methods is the user 

experience. In a questionnaire sent to authors of GEOBIA research, many indicated the lack of 

‘user friendly’ software (Johnson and Ma, 2020). Secondly, since image segmentation parameters 

are left to the analyst’s discretion, there is potential for experimental approaches that introduce 

bias. This directly impacts the image segmentation results, which influences the overall 

classification. Thirdly, computational requirements can become a challenge when processing VHR 

imagery over large spatial extents (Maxwell et al., 2019). 

 While there are advantages and disadvantages for using GEOBIA approach over pixel-

based methods, the application of GEOBIA methods can be more useful when the task is to identify 

discrete objects, and pixel-based approaches can be more useful for classify LULC.  

 

2.2 Study Area and Previous Urban Analysis 

 Detroit is in the American State of Michigan and borders Windsor, Ontario, Canada. The 

city covers over 370 square kilometres (United States Census Bureau, 2021), and is home to 

639,111 residents (United States Census Bureau, 2020), making it the largest city in the state by 

area and population. Detroit was chosen for the analysis and proof-of-concept implementation for 

two reasons: (a) there is a strong foundation of ancillary data that can be used for validation 

purposes, and (b) it is a one of the largest and most notable examples of a shrinking city with 

active, intensive demolition efforts, representing the type of urban fabric across the Rust Belt 

region that might experience similar shrinking phenomenon on a smaller scale (Xie et al. 2018).  
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2.2.1 Detroit’s Decline 

 After establishing itself as the world’s automotive capital in the early 20th century, the city 

experienced rapid population growth (Figure 2.1). Detroit’s population reached its peak in the 

1950s with over 1.8 million inhabitants, making it the fifth largest city in the United States at the 

time (Gibson, 1998). Since then, Detroit’s population has consistently declined each decade, with 

less than half of its peak population currently remaining. Some attribute the beginning of Detroit’s 

decline to the race riots of 1967 (Ager, 2015; The Economist Newspaper, 2017a; The Economist 

Newspaper, 2017b), and migration to the suburbs. Additionally, the city has experienced economic 

disruption caused by decentralization, automation of heavy industry and manufacturing, and 

foreign competition (Hoalst-Pullen et al., 2011). In a study evaluating population and economic 

metrics of the 20 largest American cities that lost population between 1980-2010, Hartt (2018) 

identified Detroit as undergoing both population and economic decline. With this decline over 

time, many residential structures were abandoned and left vacant, exposing them to decay and 

vulnerable to scavenging. Vacant structures deteriorated to the point of endangering adjacent 

communities (Xie et al., 2018), and in some instances resulted in safety concerns (Kinder, 2016, 

cited by Foster and Newell, 2019). Between 1970 and 2000, over 160,000 housing units were 

demolished in Detroit (Goodman, 2004), and based on a city-wide parcel survey published in 2014, 

112,000 lots were estimated to be vacant (Data Driven Detroit, 2014a). In 2016, the city’s vacant 

land was estimated to be approximately 60 square kilometres (Detroit Future City, 2016). Detroit’s 

continuous decline led to it filing the largest American municipal bankruptcy in 2013, worth over 

$18 billion. Shortly after the bankruptcy in 2014, Mike Duggan was elected mayor and oversaw 

efforts to eradicate urban blight. Despite previous promises of demolition for many years (Byles, 

2006), actual work between 2014 and 2020 resulted in over 21,000 residential structures being 
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demolished (City of Detroit, 2021) (Figure 2.2). Cities are dynamic in their nature, and Detroit is 

a prime example of changes occurring in a shrinking city.  

 

 
Figure 2.1: Detroit Population Counts, 1840-2020 
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Figure 2.2: Complete Residential Demolitions 2014-2018 

 

2.2.2 Urban Shrinking Analysis in Detroit 

 Much of the urban change analyzed through remote sensing has focused on urban growth, 

often ignoring urban shrinking (Thompson and de Beurs, 2018). The condition of features 

detected, such as deteriorating rooftops, may require a unique approach when analysing change. 

While research has evaluated and attempted to predict residential vacancies by correlating 

vegetative growth on lots and incorporating remotely sensed data as part of the analysis (Deng and 

Ma, 2015), fewer studies have been conducted purely on lot vacancy. Residential vacancy refers 

to the absence of a residence on a lot, with or without structure (Deng and Ma, 2015), while lot 

vacancy refers to the absence of structures on the lot. As previously mentioned, Detroit’s 

population has been under continuous population and economic decline, resulting in a long history 

of structure demolition. Recently, two major surveys evaluated parcel lot conditions in Detroit: (a) 

the Detroit Residential Parcel Survey (DRPS) in 2009 and (b) the Detroit Parcel Survey: Motor 
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City Mapping in 2014. The DRPS was conducted in the summer of 2009, where teams of three 

drove around Detroit and visually surveyed each residential property with four or fewer units 

(Detroit Data Collective, 2010). According to this survey, 26% of residential parcel lots were 

vacant at the time. The Motor City Mapping survey conducted city wide on all use zones also 

gathered information on parcel lots. About 190 surveyors and volunteers evaluated each parcel 

and the structures present on site (Data Driven Detroit, 2014b). According to the first round of 

surveys, over 112,000 parcel lots were vacant. In both cases, the surveying efforts were resource 

intensive and required a large amount of human capital. Based on the two studies outlined above, 

Thompson and de Beurs (2018) performed a city-wide analysis of parcel lot vacancy between 

2009-2014, with the use of airborne Light Detection and Ranging (LiDAR). The research was 

based on classifying parcel lots and performing a change detection matrix based on the 

classification.  

 

2.3 Airborne Imagery 

Various remote sensing applications have used spaceborne acquired imagery, when applied 

to land-use/land-cover (LULC) mapping. Blaschke (2010) refers to Landsat, Satellite Pour 

l’Observation de la Terre (SPOT), Advanced Spaceborne Thermal Emission and Reflective 

Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites as 

the “work horses”. However, their images are too coarse to detect individual objects within the 

urban context. For instance, a single 30m Landsat 8 pixel contains 2,500 0.6m aerial National 

Agriculture Imagery Program (NAIP) pixels (Figure 2.3). When performing an analysis with VHR 

imagery, one of the aims is to balance usable spatial resolution with computational capacity. 

Higher resolution is not equivalent to ‘better’ identification results. With the improvement of 1m 
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resolution satellite imagery such as IKONOS (launched in 1999), smaller features in the urban 

environment can be detected. However, as mentioned above, acquiring imagery from commercial 

satellites can be expensive, and preforming an analysis on large spatial extents may require large 

amounts of storage and computational capacity. 

Airborne imagery has been used in various urban environmental analyses. Thompson and 

de Beurs (2018) analyzed parcel vacancy in Youngstown, New York with orthophotos of one and 

0.5 foot resolution. Deng and Ma (2015) calculated the Normalized Difference Vegetation Index 

(NDVI) within parcel lot boundaries from one foot resolution colour infrared (CIR) photographs 

in the Triple Cities Region of New York. Ginner et al. (2013) used 0.5m CIR aerial imagery to 

detect lawns across 26 towns in northeastern Massachusetts. Merry et al. (2014) performed urban 

tree canopy change detection in Detroit and Atlanta by utilizing one metre colour infrared NAIP 

imagery, and aerial photographs from 1951. Ellis and Mathews (2019) performed an object-based 

delineation of the urban tree canopy in Oklahoma City by using LiDAR derived data in conjunction 

with NAIP one metre imagery. 
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Figure 2.3: Pixel comparison. 
 

2.3.1 National Agriculture Imagery Program 

 NAIP imagery is managed by the United States Department of Agriculture Farm Service 

Agency (USDA-FSA), and has captured the continental United States since 2003, with a maximum 

three-year gap in collection (United States Department of Agriculture, 2021). The imagery is 



 15 

orthorectified and formatted to a 3.75-minute longitude by 3.75-minute latitude quarter quadrangle 

tile (Davis, 2017). Acquisition time matches the agricultural growing season, resulting in imagery 

rich with vegetation. Additionally, NAIP imagery claims to contain no more than 10% cloud cover 

per tile (United States Department of Agriculture, 2021). Despite NAIPs origin in agriculture, its 

VHR imagery has been used in various remote sensing analysis, such as the urban environments 

listed above. 
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CHAPTER 3: Data 

3.1 Raster Imagery 

 This study’s timeline was defined by the acquisition dates of the NAIP imagery available 

through the United States Geological Survey Earth Explorer (USGS EE) website. The first set of 

imagery was acquired on June 28, 2014, and the second set between July 6-7, 2018. The images 

contain an eight to nine calendar-day difference, however due to NAIP’s aim of capturing 

vegetative peak, this difference is assumed to be acceptable. For simplicity, this study refers to the 

first imagery dataset as NAIP 2014 and the second imagery dataset as NAIP 2018. While both sets 

of imagery are CIR, the resolution differs, where NAIP 2014 is at one metre and NAIP 2018 is at 

0.6m. According to the metadata provided with the imagery file, the acquisition sensors and flight 

altitudes are different (Table 3.1). Additionally, the time of acquisition was different, resulting in 

opposing directions of shadows. To cover Detroit’s administrative boundary, 22 tiles were 

downloaded in May 2021, and stitched using the CATALYST Professional Mosaic tool. The 

Mosaic tool performs tile stitching automatically. Refer to Table 3.2 for the tiles’ identification 

labels, and Figure 3.1 for tile cover overview. 

 

Table 3.1: NAIP imagery characteristics, acquired through USGS EE. 
Acquisition 
Date 

Channels Resolution Flight Altitude Sensor 

June 28, 2014 R, G, B, NIR 1 m 17,500 ft 
28,000 ft 

Leica ADS 40 

July 6-7, 2018 R, G, B, NIR 0.6 m 16,000 ft Leica ADS 100 
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Table 3.2: NAIP tile Identification  
NAIP 2014 NAIP 2018 
m_4208233_nw_17_1_20140628 m_4208233_nw_17_060_20180706 
m_4208233_se_17_1_20140628 m_4208233_se_17_060_20180706 
m_4208233_sw_17_1_20140628 m_4208233_sw_17_060_20180706 
m_4208241_ne_17_1_20140628 m_4208241_ne_17_060_20180706 
m_4208241_nw_17_1_20140628 m_4208241_nw_17_060_20180706 
m_4208338_ne_17_1_20140628 m_4208338_ne_17_060_20180707 
m_4208338_se_17_1_20140628 m_4208338_se_17_060_20180707 
m_4208339_ne_17_1_20140628 m_4208339_ne_17_060_20180706 
m_4208339_nw_17_1_20140628 m_4208339_nw_17_060_20180707 
m_4208339_se_17_1_20140628 m_4208339_se_17_060_20180706 
m_4208339_sw_17_1_20140628 m_4208339_sw_17_060_20180707 
m_4208340_ne_17_1_20140628 m_4208340_ne_17_060_20180706 
m_4208340_nw_17_1_20140628 m_4208340_nw_17_060_20180706 
m_4208340_se_17_1_20140628 m_4208340_se_17_060_20180706 
m_4208340_sw_17_1_20140628 m_4208340_sw_17_060_20180706 
m_4208346_ne_17_1_20140628 m_4208346_ne_17_060_20180707 
m_4208347_ne_17_1_20140628 m_4208347_ne_17_060_20180706 
m_4208347_nw_17_1_20140628 m_4208347_nw_17_060_20180707 
m_4208347_se_17_1_20140628 m_4208347_se_17_060_20180706 
m_4208348_ne_17_1_20140628 m_4208348_ne_17_060_20180706 
m_4208348_nw_17_1_20140628 m_4208348_nw_17_060_20180706 
m_4208348_sw_17_1_20140628 m_4208348_sw_17_060_20180706 

 

 
Figure 3.1: NAIP coverage of Detroit 
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3.1.1 Pre-Processing 

 Due to the strong vegetative vigour present in NAIP imagery, a NDVI was calculated based 

on 32-bit real values. NDVI is the most common index for assessment of vegetation, as it quickly 

delineates vegetation (Huang et al., 2020), and therefore was applied in this analysis. Due to 

differences in spatial resolution between the two imagery datasets, resampling was conducted to 

match pixel registration and spatial resolution. This step is needed to ensure consistency when 

comparing total class’s land cover areas. Based on the area of interest, the NAIP 2014 imagery 

was resampled to 0.6m with the Nearest Neighbour method (Figure 3.2).  

 
Figure 3.2: NAIP 2014 resampling from 1m to 0.6 m with Nearest Neighbour method 
 

3.2 Ancillary Vector Data 

 In addition to raster data, the study used various vector files acquired from the City of 

Detroit Open Data Portal and Data Driven Detroit (Table 3.3). To classify residential structure 

change between NAIP 2014 and NAIP 2018, parcel lot vector data was used as the classification 

boundary and downloaded from the City of Detroit Open Data Portal (City of Detroit, 2021b). To 
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select areas of interest representing a variety of changes which occurred between the two NAIP 

imagery sets, three residential demolition rates are calculated based on administrative 

neighbourhood boundaries (City of Detroit, 2021c). For reference and validation, Complete 

Residential Demolitions (City of Detroit, 2021a), and Motor City Mapping (Data Driven Detroit, 

2014a) vector files were used.  

 

Table 3.3: Vector Data 
File Name Source 
Parcels City of Detroit Open Data Portal 
Current City of Detroit Neighbourhoods City of Detroit Open Data Portal 
Completed Residential Demolitions City of Detroit Open Data Portal 
Motor City Mapping, Winter 2013-14 Certified 
Results 

Data Driven Detroit 
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CHAPTER 4: Methodology 

4.1 Developing Classification Workflow and Model 

Image analysis was performed using CATALYST Professional Focus software, and their 

Object Analyst tool. Parcel classification and change detection was conducted using ArcGIS Pro.  

 A pilot study area was used to identify appropriate image segmentation parameters, 

classification features, and to generate a classification model. Those findings were later applied to 

three neighbourhoods in Detroit. Due to computational demands, a 2.59 square kilometre (one 

square mile) extent within Detroit was selected to represent urban residential ground conditions 

on which testing was performed (Figure 4.1). The parameters were tested on the NAIP 2018 

imagery set due to its original higher resolution than NAIP 2014 data. Once the workflow was 

established to be appropriate for the 0.6m NAIP 2018 imagery, it was applied to NAIP 2014 

imagery and evaluated to determine whether the same parameters required adjustment. It is not 

obvious that imagery with different spatial resolutions, sensors, and flight altitudes would perform 

similarly with identical parameters. It was important to identify a segmentation that would produce 

image-objects resistant to shadow impacts, since the two imagery sets have opposing shadow 

directions (Figure 4.2). Various researchers (both pixel and object-based) describe shadows as a 

challenge for analysis (Hussain et al., 2013; Toney et al., 2012).  For instance, features such as 

water, shadows, roads, and building rooftops may have similar spectral values (Hossain and Chen, 

2019). The final classification is composed of two classes: Impervious and Pervious. One aim of 

the segmentation and classification is the delineation of surfaces under shadows. Additional classes 

introduce complexity, especially when selecting appropriate ground features representing samples 

for classes. For this study, Pervious represents all types of vegetation (trees, bushes, lawns, grass, 

and other green biomass). Impervious represents the opposite of vegetation, including roads, 
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asphalt, cars, bare soil, and rooftops. Water was included in this class to distinguish it from 

vegetation.   

 

 
Figure 4.1: 2.59 square kilometre (one square mile) extent, NAIP 2018 
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Figure 4.2: NAIP imagery, opposing direction of shadows 
 

4.1.1 Image Segmentation 

 A multiresolution segmentation was performed, based on the availability of parameters 

within CATALYSTs Object Analyst tool (Figure 4.3). Previous studies adopted an experimental 

approach when deciding on the optimal segmentation parameters (Ellis and Mathews, 2019; 

Jayasekare et al., 2017; Norman et al., 2021; Shahi et al., 2016; Yen et al., 2020). In this study, 
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the parameter values were identified in the following order: shape and compactness, image 

channels, and lastly, scale. Despite descriptions of scale as the most important parameter (Maxwell 

et al., 2019), scale is supplementary to the shape and compactness parameters in this study. This 

is due to the underlying emphasis the shape and compactness have on the boundaries of the image-

objects generated. In the Object Analyst tool, the options for the shape and compactness range 

between 0.1-0.9, where 0.1 indicates a low weight and 0.9 the highest. To understand the impact 

of various weight combinations, an experimental approach was applied, and three values were 

chosen to represent low (0.1), medium (0.5) and high (0.9) shape and compactness. Those were 

segmented based on the Red, Green, Blue (RGB) bands with a scale of 5, and crossed with each 

other, resulting in a 3x3 matrix (Figure 4.4). Based on a visual interpretation, the best performing 

shape and compactness were chosen. Once the shape, compactness and bands were established, a 

series of various scales was performed in increments of 10 (5, 15, 25). 

 

 
         Figure 4.3: CATALYST Object Analyst - segmentation parameters 
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Figure 4.4: Image segmentation shape and compactness matrix example. Based on the RGB 

bands, with a scale of 5. 
 

4.1.2 Training Model and Validation 

 The literature does not describe in exact terms recommendations for training objects. 

Maxwell et al. (2019) suggests that training and validating objects should be many. In this study, 

75 designated areas per class (a total of 150 areas) were chosen as a selection of surfaces for 

training and validation objects. These areas represent a variety of pervious and impervious 
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surfaces. Within each area, two objects were selected for the training model, and two validation 

objects for future classification accuracy (Figure 4.5). Near-identical objects were selected for 

training and validating. The identification of ground features was performed by visual 

interpretation with the help of false infrared channel combination. Close attention was paid to 

selecting similar ground features obscured by shadows to maintain consistency and breadth of 

variety for training/validating objects. In instances where the generated boundary included both 

pervious and impervious surfaces, the object was assigned based on the majority of surface 

covered. If an object contained 50/50, it was not used for training or validation. This was intended 

to ensure that objects representing Pervious and Impervious surfaces are as true to reality as 

possible.  

 

 
   Figure 4.5: Training/validating image-objects areas and examples 
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4.1.3 Classification 

 Object Analyst supports two machine learning classifiers: Random trees (RT), and Support 

Vector Machine (SVM). In this study, the SVM classifier method was used with a Radial Basis 

Function and Normalized data, based on the default settings within Object Analyst. For the 

classification, only statistical features were used. Since the objective was not to generate real-life 

objects, but rather differentiate between pervious and impervious surfaces, geometrical attributes 

were excluded, and only statistical features were tested. To identify the combination of statistical 

features that would yield the highest accuracy, a set of 12 experimental classifications were 

performed (Table 4.1). This systematic approach was developed for this analysis, based on the 

available statistical values within Object Analyst tool. The first four sets of classifications tested 

the accuracy of RGB channels, the second four classifications included NIR, and the last set of 

four classifications introduced the NDVI values. Statistical values calculated for each image-object 

were minimum, maximum, mean, and standard deviation. The advantage of performing the 

classifications systematically is to identify if a pattern emerges based on a certain set of statistical 

combinations. 

 

Table 4.1: Statistical attribute selection 
Channels 
Used 

RGB RGB, NIR RGB, NIR, NDVI 

Statistical 
Attributes 

1. Min, Max, Mean, 

Std. 

2. Min, Max, Mean 

3. Mean 

4. Min, Max, Std. 

5. Min, Max, Mean, 

Std. 

6. Min, Max, Mean 

7. Mean 

8. Min, Max, Std. 

9. Min, Max, Mean, 

Std. 

10. Min, Max, Mean 

11. Mean 

12. Min, Max, Std. 
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4.1.4 Classification Accuracy Assessment.  

Researchers working with GEOBIA methods indicate that there is insufficient research 

attention with respect to accuracy assessment (Johnson and Ma, 2020). One of the challenges in 

assessing the accuracy of image-objects based on a single pixel method is that the classification 

results can be misrepresented. For this study, an Overall Statistics and Error Matrix were used to 

assess an object’s classification accuracy. The reason for this is threefold: (a) there is no clear 

consensus of a method to be used, (b) previous GEOBIA research has used the Confusion/Error 

Matrix (Norman et al., 2021), and (c) within Object Analyst the Accuracy Statistics and Error 

Matrix are built in as default.   

 

4.1.5 Batch Application 

 VHR imagery requires high computational power to process large areas. Due to high 

volumes of data, the developed model was applied to other areas of Detroit for validation of 

performance and visual inspection to ensure it performed similarly in other areas of the city. 

 To perform batch classification and rule out the need to create a new model for NAIP 2014 

imagery, the model developed for NAIP 2018 was applied to the NAIP 2014 (resampled to 0.6m) 

imagery. If the training model developed for NAIP 2018 was successful in detecting 

Pervious/Impervious surfaces, it would be used as the training model for classification of NAIP 

2014. If unsuccessful, a new set of image-objects would be selected based on the designated 

training areas for NAIP 2014. 
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4.2 Parcel Classification and Change Detection 

 Thompson and de Beurs (2018) classified parcel lots into structure/no structure classes 

based on remotely sensed data and classifies parcel lots based on structure presence.  The parcel 

lot status for this study was established by the total Impervious land cover area of each residential 

parcel lot. To classify the parcel lots, a series of queries evaluating thresholds were performed. To 

validate the accuracy of the thresholds, the parcel lots within the study area were manually 

classified.  

 

4.2.1 Parcel Status Validation 

 Initially, the validation was meant to be conducted based solely on the ancillary vector 

data. However, a substantial number of records did not accurately represent ground conditions. 

For instance, certain residential demolitions were not recorded in the Complete Residential 

Demolitions shapefile but based on visual comparison of the two imagery sets, a structure had 

clearly been demolished. Additionally, when comparing the Motor City Mapping file, the 

structure/no-structure field did not always correspond to present ground features in the 2014 

imagery set.  Based on that, each parcel’s status was assigned manually, with the help of vector 

data from the Detroit Open Data Portal and Data Driven Detroit as well as the NAIP imagery, for 

confirmation when visual interpretation proved difficult. To help interpret ground features 

accurately the following methods were incorporated: (a) multitemporal observation – observing 

for clues from different times. (b) False colour infrared imagery – helping with impervious surfaces 

hidden under shadows. (c) Cross referencing with ancillary vector shapefiles, such as Complete 

Residential Demolitions and Motor City Mapping. Parcels were assigned with a numerical value, 

where one represents an absence of residential structure, and two represents the presence of 
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residential structure. This step was applied to the 2.59 square kilometre (one square mile) tile and 

the three neighbourhoods of interest for the NAIP 2014 and NAIP 2018 data sets. In total, 19,532 

parcel lots were visually interpreted and manually classified as validating features. Parcel change 

between NAIP 2014 and NAIP 2018 was classified into four classes of change: Structure 

Remained, Structure Demolished, Remained Empty, and New Structure. Visual inspection was 

performed on all types of parcel lots within the areas of interest. However, the demolition change 

detection analysis was performed on parcel lots zoned as Residential.  

 

4.2.2 Thresholds Classifying Residential Parcel Lots and Change Detection 

 Based on the known residential lot vacancy, a mean Impervious land surface square metre 

area was calculated and used as a threshold for queries. Based on visual interpretation of the 

imagery, there were 1,060 vacant residential parcel lots out of a total 2,292 residential parcel lots 

in NAIP 2018 imagery. The mean Impervious land cover on those parcel lots was 19.7 square 

metres. Therefore, the first threshold assumes a residential structure is present on a residential lot 

if the Impervious land area surface classified is above 20 square metres. Increments of +5 square 

metre of Impervious land surface were tested up to 30 square metres. Accuracy was assessed and 

validated based on the visual interpretation of the parcels. Subsequently, a single threshold of 25 

square metres was selected and change detection of residential parcel lots was performed. 

Demolition rate accuracy calculations were as follows: 

 

Selected = [Selected Residential Demolitions/Total Number of Residential Demolitions]*100 (1) 

 

Error (of Commission) = [Incorrectly Detected / Total Selected]*100               (2)  
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4.3 Application on Three Areas 

Once the classification model and best threshold to classify Parcel Lots were established, 

identical GEOBIA parameters were applied to three neighbourhoods of interest in Detroit, 

representing high, median, and low residential demolition rates between 2014-2018 (Table 4.2). 

Residential demolitions do not occur uniformly across space, and it is important to validate the 

performance of the workflow across different rates of change. The aim was to assess different 

changes in ground conditions, and whether the workflow performs similarly across a variety of 

urban environments. To calculate the residential demolition rates between the two NAIP imagery 

sets, the residential demolitions were selected between June 30, 2014, and July 6, 2018, totaling 

13,657 residential demolitions city wide. This number is calculated into a rate, based on the 

neighbourhood’s administrative boundaries, and the total of residential parcel lots present within. 

To ensure a sufficient sample number, the neighbourhoods had to have at least 1,000 residential 

parcel lots. The first neighbourhood was Crary/St Mary, representing a low residential demolition 

rate of 0.83%. The second neighbourhood was Core City, containing the median residential 

demolition rate of 2.9%. The third neighbourhood was Pulaski, representing a very high residential 

demolition rate of 12.1%. (Figure 4.6). 
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Table 4.2: Three chosen neighbourhoods, residential demolition rates based on Complete 
Residential Demolitions, City of Detroit Open Data Portal (2021a) 
Neighborhood Residential 

Parcel Lots 
Residential 
Demolitions 
2014-2018 

Residential 
Demolition Rate 

 

Crary/St. Mary 
(low) 

3,226 27 0.83%  

Core City 
(median) 

1,161 34 2.9%  

Pulaski (high) 2,403 291 12.1%  

 

 
Figure 4.6: Residential demolition rates by neighbourhood, and three areas of interest, between 

2014-2018 NAIP imagery 



 32 

CHAPTER 5: Results and Discussion 

5.1 GEOBIA Workflow Repeatability 

5.1.1 Image Segmentation, Feature Selection, and Classification Accuracy 

Based on experimentation, the most suitable parameter combination to generate image-objects 

least effected by shadows was segmentation on the Blue and NDVI channels with a scale of 5, 

shape of 0.1, and compactness of 0.9 (Figure 5.1). Within the 2.59 square kilometre (one square 

mile) extent, this combination generated 165,320 image-objects in NAIP 2014 and 263,639 image-

objects in NAIP 2018 image (Table 5.1). The vast difference in number of objects can be attributed 

to the initial resolution difference. Since the NAIP 2014 imagery has a slightly lower resolution 

than the NAIP 2018 imagery, fewer ground features were registered in the image, resulting in a 

more ‘foggy’ or ‘blurry’ appearance. Despite the apparent over-segmentation of real-life objects, 

the segmentation was successful at delineating pervious and impervious surfaces under shadows 

and was therefore suitable for this analysis.  

 

 
      Figure 5.1: Tile extent - image segmentation outcomes in 2014 and 2018 based on Blue and 

NDVI channels, scale of 5, shape of 0.1, and compactness of 0.9 
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Table 5.1: Image-objects and class objects 
Imagery Total Image-Objects Pervious Objects Impervious Objects 
2014 165,320 1,360 1,498 
2018 263,639 2,388 8,161 

 

In the feature selection step, the best classification accuracy was achieved when all 

channels and the NDVI were used, with statistical values of mean only (Table 5.2). Other statistical 

combinations also performed with similarly high accuracy values. For instance, the inclusion of 

all available statistical measures among the visible spectrum resulted in 98% overall accuracy, 

suggesting that it is possible to achieve meaningful results with visible light only. Based on the 

following 12 classifications, when features included only mean statistical values, the classification 

performed either the best, or second best. This indicates that additional statistical features such as 

maximum, minimum, and standard deviation do not necessarily increase the classification 

accuracy in this context.  

 

Table 5.2: NAIP 2018, statistical features, classification accuracies 
Attribute Channels Statistical Features Overall 

Accuracy Min Max Mean Std. 
RGB + + + + 98% 
RGB + + +  97.6% 
RGB   +  97.6% 
RGB + +  + 96.3% 
RGB, NIR + + + + 97.6% 
RGB, NIR + + +  98.0% 
RGB, NIR   +  98.0% 
RGB, NIR + +  + 96.6% 
RGB, NIR, NDVI + + + + 97.0% 
RGB, NIR, NDVI + + +  97.3% 
RGB, NIR, NDVI   +  98.3% 
RGB, NIR, NDVI + +  + 95.3% 

 

The first classification was performed on the NAIP 2018 imagery 2.59 square kilometre 

(one square mile) extent, yielding an overall accuracy of 98.3%. In NAIP 2018, the Pervious class 
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covered 1.77 square kilometres and the Impervious class covered 0.81 square kilometres. Refer to 

Table 5.3 for full accuracy statistics, Table 5.4 for the error matrix, and Figure 5.2 for the tile 

overview.  

 
Figure 5.2: NAIP 2018 2.59 square kilometre (one square mile) tile extent - classification result 
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Table 5.3: 2018 Accuracy Statistics Report of 300 sampling objects 
Class 
Name 

Producer’s 
Accuracy 

95% Confidence 
Interval  

User’s 
Accuracy 
 

95% Confidence 
Interval 
 

Kappa 
Statistic 
 

Pervious 99.333% (97.697% 100%) 97.385% (94.530% 100%) 0.947 
Impervious 97.333% (94.421% 100%) 99.319% (97.650% 100%) 0.986 
Overall Accuracy: 98.333% 95% Confidence Interval (96.717% 

99.948%) 
 

Overall Kappa Statistic: 0.966 Overall Kappa Variance: 0.666 
 

Table 5.4: 2018 Error (confusion) Matrix 
Classified Data Reference Data 
 Pervious Impervious Totals 
Pervious 149 4 153 
Impervious 1 146 147 
Totals 150 150 300 

 

Based on the object classification conducted on the NAIP 2018 image, the training model 

was applied to NAIP 2014 image. However, the training model did not perform successfully and 

classified all but six image-objects into the Pervious class. This may be due to the radiometric 

difference between the two imagery datasets because of different sensors, and the reflectance of 

the red and NIR channels could be different between those two dates (since those bands are 

responsible for the NDVI, and the NDVI is a major component of the classification). Based on the 

designated areas developed earlier in the study, the training objects had to be re-selected for the 

NAIP 2014 imagery. Attention was paid to selecting the most similar objects as possible to ensure 

consistency between the two sets of imagery. Once the training objects were assigned, the 

classification was performed again. Image segmentation parameters, attribute features, and the 

SVM classifier remained the same, and the only difference was the objects of the training model. 

The classification resulted in an identical overall accuracy of 98.33%, suggesting that the choice 

of objects for training was successful. In NAIP 2014, the Pervious class covered 1.74 square 
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kilometres and the Impervious class covered 0.84 square kilometres. Refer to Table 5.5 for full 

accuracy statistics, Table 5.6 for the error matrix, and Figure 5.3 for the tile overview. 

 

 
Figure 5.3: NAIP 2014 2.59 square kilometre (one square mile) tile extent - classification result 
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Table 5.5: 2014 Accuracy Statistics Report of 300 sampling objects 
Class 
Name 

Producer’s 
Accuracy 

95% Confidence 
Interval  

User’s 
Accuracy 
 

95% 
Confidence 
Interval 

Kappa 
Statistic 
 

Pervious 100% (99.666% 100%) 96.774% (93.670% 
99.878%) 

0.935 

Impervious 96.666% (93.460% 
99.872%) 

100% (99.655% 100%) 1 

Overall Accuracy: 98.333% 95% Confidence Interval (96.717% 
99.948%) 

Overall Kappa Statistic: 0.966 Overall Kappa Variance: 0.000 
 

Table 5.6: 2014 Error (confusion) Matrix  
Classified Data Reference Data 
 Pervious Impervious Totals 
Pervious 150 5 155 
Impervious 0 145 145 
Totals 150 150 300 

 

5.1.2 Batch Classification and Application to Areas of Interest 

 When the GEOBIA training model was applied to the three areas of interest, it performed 

similarly based on visual inspection (Figures 5.4 - 5.6). This suggests that the same parameters 

and training model can be applied to other areas that were acquired on the same date, with the 

same sensor, and the same flight altitude. However, the image classification did not perform 

flawlessly. For instance, rooftops present in the Crary/St. Mary area of interest were more 

susceptible to error due to shadows. The introduction of radiometric differences during NAIP 

image pre-processing might explain this phenomenon.  
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Figure 5.4: Batch GEOBIA, low demolition rate, Crary/St. Mary, Detroit 
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Figure 5.5: Batch GEOBIA, median demolition rate, Core City, Detroit 
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Figure 5.6: Batch GEOBIA, high demolition rate, Pulaski, Detroit 
 

5.2 Parcel Classification and Change Detection 

 Impervious surfaces were clipped to parcels contained within the 2.59 square kilometre 

(one square mile) tile extent. Figure 5.7 illustrates the NAIP 2014 tile extent and Figure 5.8 

illustrates the NAIP 2018 extent. When layers are overlapped, NAIP 2014 is larger than the 
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boundaries generated based on NAIP 2018 (Figure 5.9). Despite the opposing shadow directions, 

both classifications were able to generate very similar boundaries.  

 
Figure 5.7: NAIP 2014 Impervious surfaces on parcel lots 
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Figure 5.8: NAIP 2018 Impervious surfaces on parcel lots 
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Figure 5.9: Impervious surface overlap on parcel lots 
 

5.2.1 Visual Interpretation and Change Detection From-To 

 Four classes represent the change captured between the NAIP 2014 and 2018 imagery sets: 

(a) Structure Remained – Parcel lot contained a structure in both data sets, (b) Structure 

Demolished – A structure existed in NAIP 2014, but an empty parcel lot in 2018, (c) Remained 
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Empty – Parcel lot is vacant in both imagery sets, (d) New Structure – Parcel lot did not contain a 

structure in 2014 and did contain a structure in 2018.  According to the visual inspection of the 

NAIP imagery datasets, within the 2.59 square kilometre (one square mile) tile extent, 66 (2.78%) 

demolitions occurred (Figure 5.10). In Crary/St. Mary (low rate), 32 (0.94%) occurred. In Core 

City (median rate), 35 (2.37%) occurred. In Pulaski (high rate), 295 (11.61%) occurred.  Table 5.7 

describes the number of parcel lots within each class, and Figure 5.11 maps the three areas of 

interest. 

 

 
Figure 5.10: 2.59 square kilometre (one square mile) tile extent – visually observed 
change detection: NAIP 2014- NAIP 2018 



 45 

 
Figure 5.11: Three areas of interest, visually observed change detection: NAIP 2014 – NAIP 
2018 
 

Table 5.7: Visual change detection 
Aera of 
Interest 

Total 
Parcel 
Lots 

Residential 
Parcel 
Lots 

Structure 
Remained 

Structure 
Demolished 

Remained 
Empty 

New 
Structure 

Tile Extent 2,370 2,292 1,267 66 1,025 12 
Low (Crary/St. 
Mary) 

3,380 3,226 3,194 32 152 2 

Median (Core 
City) 

1,476 1,161 364 35 1,023 13 

High (Pulaski) 2,540 2,403 1,925 295 320 0 
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5.2.2 Detection of Structures and Parcel Classification Based on Thresholds 

 This analysis captures residential demolitions. Therefore, the queries performed include 

results based solely on residential parcels. Within the NAIP 2018 2.59 square kilometre (one 

square mile) tile extent, there are 1,060 empty residential parcel lots, in which the mean Impervious 

land surface area is 19.78 square metres. This figure guided the decision for a threshold for 

structure presence on a residential parcel lot. Increments of five square metres up to 30 were tested 

to attempt to capture more residential lots that were empty. The first query, which assumes a parcel 

lot is empty if the total area of Impervious is 20 square metres or less, detected 88.49% of the total 

empty residential parcel lots. When the threshold was increased, more empty parcels were 

detected. However, this also introduced more commission error (included in a class it does not 

belong too). The same methodology yielded similar results with consistently higher commission 

rates when applied to the 2014 NAIP tile extent. However, this did not hold true when similar 

thresholds were applied to the three neighborhoods of interest. While successful detection rates of 

residential parcels containing structures decreased to as low as 63%, the commission error in some 

instances reached as high as 82%. The fewer empty residential parcels, the worse the detection 

method performed. Refer to Table 5.8 for structure detection accuracies.  
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Table 5.8: Residential structure detection by parcel lot – accuracy comparison  
Area of 
Interest 

Observed 
Empty 
Residential 
Parcel Lots 

Mean Empty 
Residential 
Parcel in Sq. 
Metres 

No. of Residential Parcels Selected When Impervious area under x Sq. Metres: 
20  Selected Error 25 Selected Error 30 Selected Error 

Tile 
Extent 
2014 

1,006 10.36 915 89.26% 1.85% 934 90.75% 2.24% 951 92.04% 2.62% 

Tile 
Extent 
2018 

1,060 19.78 945 88.49% 0.74% 972 90.84% 0.92% 994 92.64% 1.20% 

Low 
2014 

122 28.12 251 79.50% 61.35% 285 81.96% 72.90% 321 86.06% 82.07% 

Low 
2018 

147 45.23 144 70.06% 28.47% 164 72.10% 35.36% 189 75.51% 41.26% 

Median 
2014 

837 26.02 623 73.35% 1.44% 648 76.34% 1.38% 681 80.16% 1.46% 

Median 
2018 

860 26.85 603 69.41% 0.99% 646 74.18% 1.23% 682 78.13% 1.46% 

High 
2014 

266 43.56 325 65.78% 46.15% 366 68.79% 50.0% 396 71.42% 52.02% 

High 
2018 

561 46.04 404 63.99% 11.13% 440 66.31% 14.09% 475 71.12% 16% 
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Within the select square metre thresholds, NAIP 2018 consistently detected fewer vacant 

residential parcel lots than NAIP 2014. Conversely, the commission error in NAIP 2014 was 

consistently larger than in NAIP 2018. With the same land area, more residential lots were selected, 

increasing both the rate selection as well as the inclusion of falsely identified empty lots. This may 

be due to the different original imagery spatial resolutions and different conditions and view angles 

of vegetation surrounding rooftops. 

 

5.2.3 Change Detection Between NAIP 2014-2018 

 The 25 square metre threshold was investigated for residential parcel lot change detection 

between the two imagery sets. Here, they are compared to the visually observed residential parcel 

lot demolitions (Table 5.9). The highest rate of successfully detected demolitions is 57.57% and is 

within the 2.59 square kilometre (one square mile) tile extent. However, 53.08% of the total 

selection was falsely detected. Table 5.10 describes the classes to which the selected parcels 

belonged. Figures 5.12 – 5.15 map the undetected residential parcel lots that were demolished 

between NAIP 2014 and NAIP 2018, the successfully detected demolitions, and the residential 

parcel lots that were selected but did not experience demolition between the two dates. The average 

successful detection rate was 42% and the average commission error was 62%.  

 

Table 5.9: Change detection of residential parcel lots based on 25 square metre threshold 

Area of 
Interest 

Observed 
Demolitions 

No. of Parcels 
Selected at 25 Sq. 
m. of Impervious 

Successfully Selected 
out of Total 
Demolitions 

Commission 
Error 

Tile Extent 66 81 57.57% 53.08% 
Low 27 33 29.62% 75.75% 
Median 32 104 37.5% 88.46% 
High 295 196 44.06% 33.67% 
Average: 42.18% 62.74% 
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Table 5.10: 25 square metre of Impervious land areas as structure threshold selection breakdown 
Observed Parcel 
Lot Condition 

Tile Extent Low Median High 

Remained Empty 37 7 86 40 
Structure 
Demolished 

38 8 12 130 

Structure Remained 6 18 6 26 
 

 
Figure 5.12: 2.59 square kilometre (one square mile) tile extent – correct/incorrect change 
detection (based on 25 square metre structure threshold) 
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Figure 5.13: Crary/St. Mary (low residential demolition rate) – correct/incorrect change 
detection (based on 25 square metre structure threshold) 
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Figure 5.14: Core City (median residential demolition rate) – correct/incorrect change detection 

(based on 25 square metre structure threshold) 
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Figure 5.15: Pulaski (high residential demolition rate) – correct/incorrect change detection 
(based on 25 square metre structure threshold) 
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CHAPTER 6: Challenges, Conclusion, and Future Research 

6.1 Challenges Encountered 

 “Change detection from remotely sensed data is a complicated process, with no single 

approach optimal and applicable to all cases” (Hussain et al., 2013). Many analyses face limiting 

factors, and this study is no different. Understanding potential points of friction can help future 

researchers be aware of what they may encounter, and what types of benefits can be extracted from 

the results. Each study faces a unique set of challenges based on by the data type, objective at 

hand, and/or methods. This study outlined several factors including data quality, consistency, and 

the challenges of using GEOBIA to solve the research questions that were posed.  

 

6.1.1 Working with Aerial Photographs 

While airborne imagery can provide higher spatial (pixel) resolution than publicly available 

satellite data, there are inherent factors that limit the quality of the imagery. The consistency of the 

sensor capturing the image, line of flight and altitude, time of day, meteorological conditions, and 

human processing techniques can all introduce variability to the final product. The challenge of 

sensor consistency is evident when working with NDVI values. The NDVI is not an absolute value, 

but rather a fraction of reflectivity ratio. Huang et al. (2020) demonstrated the difference of NDVI 

values when different sensors were used to capture the same ground features. In this study, the two 

NAIP imagery sets were captured with different sensors. NAIP imagery contains oblique views 

due to off-nadir capture angles, resulting in elevated features such as tree canopies appearing larger 

and over-representing true ground conditions (Toney et al., 2012). This type of error can 

compound when performing change detection analysis, as there is uncertainty concerning which 

features were impacted by the oblique view, as the flight line is not published by NAIP. Finally, 
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aerial photography does not penetrate through cloud cover or tree canopy, and consequently may 

not necessarily represent the ground surface. A human can read between the lines and infer a tree 

is covering a road, but it is much more complex to “teach” the computer to form this connection. 

 

6.1.2 Current GEOBIA Limitations 

GEOBIA has emerged as an alternative method to pixel-based analysis, with the promise 

of reducing or even erasing pixel-based method imperfections. Despite its potential, the GEOBIA 

field has yet to mature. For instance, the question of what parameter values to use for image 

segmentation is left nearly unanswered and to the discretion of the analyst, which often manifests 

in the form of multiple trials. While this allows for flexibility, it also introduces failure points.   

GEOBIA methods overestimated tree canopy cover compared to human interpretation, 

often due to shadow misclassification (Toney et al., 2012). Surfaces are susceptible to lighting, 

view angles, and weather, which results in objects not appearing the same or having the same 

boundaries in different acquisition dates, even if they have not changed (Chen et al., 2012). 

Computational demands posed a challenge in this study’s initial application of GEOBIA 

methods. When working with VHR 0.6m imagery, an initial 25 square kilometre tile was near 

impossible to process due to CATALYST becoming unresponsive. The training area was 

ultimately defined by computational capacity, possibly altering the overall results by restricting 

the variety of surfaces within the sample area. The computational demands of applying GEOBIA 

methods to large spatial extents were also acknowledged as an issue by Maxwell et al. (2019). 
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6.1.3 Objective Specific Challenges 

In this study, three accuracy measures comprise the overall accuracy of the residential 

structure change detection: (a) the accuracy of the image segmentation/image-objects, (b) object 

classification accuracy, and (c) parcel classification (structure/no-structure). Despite good object 

classification accuracy, this does not translate to sufficient parcel change detection accuracy. Each 

one of the steps can imperil the accuracy of the change detection.  

Liao et al. (2021), outlined the different spectral signatures of various rooftops, ranging 

from steel to brick, making the delineation of rooftops a complex process. Moreover, Chen and 

Hutchinson (2007) indicated that post-damage structures are more difficult to detect with OBCD 

than urban development. This poses a challenge with shrinking cities, as many of the structures 

that are demolished have sustained structural damage that prompted the demolition in the first 

place. Malanga (2009) indicated that houses are literally destroyed by vegetation overgrowth when 

they become vacant.  

 

6.2 Conclusion 

 This study attempted to develop a workflow for identification of residential structure 

demolition in Detroit, a shrinking Rust Belt city. Experimentation with remotely sensed methods 

and GEOBIA workflows resulted in successful image segmentation and object classification that 

overcomes shadows. This study demonstrated that that it is possible to batch classify imagery in 

different areas of the city when captured by the same acquisition aircraft. This is significant, as 

processing VHR imagery requires high computational capacity, and working in smaller spatial 

extents may be necessary. It also demonstrated that classification of identical areas was possible 

when images were captured by various acquisition aircraft on different dates. By adjusting the 
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training objects and aligning them to near identical, the image segmentation and classification was 

performed successfully. Pervious and Impervious surfaces were successfully delineated despite 

the presence of heavy shadows. A single workflow was developed and applied with success. 

 Using 0.6 metre spatial resolution imagery, image segmentation was successfully 

performed when applied on the blue and NDVI channels, with a scale of 5, shape 0.1, and 

compactness 0.9. This combination generated different LULC boundaries under shadows. By 

using the mean values of all available CIR channels and the NDVI, the classification of Pervious 

and Impervious was most successful, with overall accuracy of over 98%. Due to computational 

demands when analyzing VHR imagery with GEOBIA methods, size and spatial extent play an 

integral role in the workflow. 

 Parcel classification into structure/no-structure based solely on Impervious land cover area 

yielded varying results. Successfully selected structures ranged between 63%-92%, where 

commission error ranged anywhere between 0.7%-82%. When the delineation of structures was 

performed in a neighbourhood with many vacant lots, the accuracy increased. The neighbourhoods 

with lower lot vacancies resulted in poorer delineation of structures on parcel lots. With the 

assistance of knowing where demolitions might have occurred, ground surveying resources can be 

assigned more efficiently. An approach that integrates visual interpretation is necessary to reliably 

detect changing residential demolitions within a shrinking Rust Belt city.  

 

6.3 Recommendations for Future Research 

Based on this research, this workflow can be repeated in a variety of locations which have 

a similar climate to Detroit by adjusting the training objects to represent the site’s specific ground 
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conditions. The combination of spatial resolution and the geographic spatial extent should be 

considered, as those will impact the required computational capacity for the research. 

Throughout this research several potential future investigation possibilities were identified. 

First, reducing data redundancy could assist when trying to segment the image for impervious 

surfaces. Algorithms such as Principal Component Analysis have been used in various other 

remote sensing applications, and early explorations in this study showed promising results. 

Second, because of the issues posed by shadows, it is more important to distinguish the areas under 

shadows to be certain of their surface. Clipping the image and performing additional GEOBIA on 

only the impervious surface can help ensure shadows are not misclassified into vegetative classes. 

Third, adding a ‘bare soil’ class may improve the impervious land surface area found on residential 

parcel lots with freshly demolished structures, since vegetation has not yet regrown on these parcel 

lots. Fourth, instead of addressing impervious land surface square metre area, intersect the 

generated areas from the two datasets. Perhaps more sophisticated mathematical equations could 

yield improved structure detection results. Finally, investigating the utility of performing year to 

year band-differencing, and segmenting those results could be considered.  

Besides potential avenues to explore, some things should be kept in mind for future studies. 

Imagery with leaf-on conditions introduced multiple barriers when trying to detect rooftops, from 

roofs being covered by tree canopies, to vegetation consuming about-to-be-demolished residential 

structures. 
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