
 
 

SOIL ANALYSIS VIA REMOTE SENSING AND ARTIFICIAL INTELLIGENCE FOR 

PRECISION REGENERATIVE AGRICULTURE 

 

 

by 

 

 

Takoda Chance Kemp, Bachelor of Geographic Analysis (Hons.) 

 

 

A thesis presented to Ryerson University 

 

in partial fulfillment of the 

requirements for the degree of 

Master of Spatial Analysis 

in the program of 

Spatial Analysis 

 

 

 

 

Toronto, Ontario, Canada, 2022 

© Takoda Chance Kemp, 2022 



ii 
 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners. 

 

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose 

of scholarly research. 

 

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, 

in total or in part, at the request of other institutions or individuals for the purpose of scholarly 

research. 

 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 

 Soil electrical conductivity maps were generated for greenspace in the Greater Toronto 

Area using a conditional generative adversarial network, which is a form of deep learning where 

one neural network is used to train another. The results of the analysis show that the model can 

accurately predict soil conductivity 34.6% of the time. It could possibly be strengthened with the 

inclusion of more electromagnetic bands in the supervised classifications used to train the network, 

such as the infrared spectrum, as well as Light Detection and Ranging data. This three-dimensional 

imagery should be considered, as the model is not optimized when soil is obscured by foliage. 

Generally, these two datatypes are commercially available, and commonly used for the analysis of 

greenspace. Microdrones can potentially be equipped with computer vision enabled sensors 

operating this neural model to iteratively analyse soil types, and complete aerial cropping.  
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1 Introduction 

A changing climate has prompted many to seek alternative methods of production, housing, 

and security. A stable agricultural sector must tolerate the changes in the biosphere related to 

human influence, like changing climate patterns, and extreme weather events, which may 

introduce uncertainty to plant production. Currently, artificial intelligence has allowed, through 

machine learning, the ability to effectively cluster entities, or features with a certain number of 

dimensions into a pre-defined number of groups (Chiang and Mirkin, 2007). This analysis aims to 

classify the electrical conductivity of soil in three parks in Toronto, using drone imagery, then 

internalize those results into a generative model to reduce the time investment of future analyses. 

Farming involves many variables. There are many plants that require specific care, and 

climate. Generally, practices that increase the viability of all species of produce are especially 

valuable.  Broadly speaking, these techniques increase the availability of nutrients in the soil to a 

plant, and are mostly used by industry professionals, or those that grow produce for profit. Around 

the world there are numerous climatic patterns to consider, and countless permutations of crop 

cover. Theoretically, a statistical method that allows a drone operator to quickly realize the 

qualities of their ground conditions, at least iteratively, would allow for large-scale improvements 

in efficiency. 

This is especially useful for farming practices but can also be applied in other facets of 

Geography – like planning and conservation. Farmers understand well that the factors important 

to the health of a plant are found in the soil, surrounding geography, and climate. These factors are 

generally the volume of nutrients, the availability of light and water, and finally, the potential of 

hydrogen (pH) in the soil. Furthermore, contemporary research has found that, in certain scenarios, 

self-introduced bacteria may also play a helpful role in sustainable agricultural production (Kumar 

et al., 2016; Ramakrishna et al., 2019). This is also true for mycorrhizal fungi, which have a 

symbiotic relationship with plant roots, and give plants nutrients for carbon (Rillig et al., 2016). 

Another recent discovery in agricultural science is humic and fulvic acids, which increase the 

availability of nutrients for a plant’s roots (Canellas et al., 2015).  

Anecdotally, farmers in the Bahamas have reported soil analysis technology as having a 

large cost barrier.  The ability to classify all agriculturally viable soil using a small amount of data 

will be an important asset for researchers and agriculturalists. An agriculturalist, in this case, would 
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be a person that produces plants for sale or horticultural reasons.  These farmers would no longer 

need to spend that capital on analyses, and can instead use it elsewhere, like on the importation of 

seeds, fertilizer, or increasingly energy efficient capital assets, like solar panels. The model can be 

altered for aesthetically pleasing endemic plants, or profitable produce – so that pollution, and food 

security can be addressed, respectively. 

How this all relates to machine learning is within the realm of remote sensing. These days, 

open-source tools are available for anyone that seeks to create high-resolution maps of their land 

and perform supervised k-means cluster analyses of their imagery. In any event, soil samples of 

nutrients and pH can be taken from parcels of the study area. Human significant pH ranges, which 

are those that can grow useful plants, can be cartographically illustrated over the study area. Finally, 

through supervised classifications, in both free, and enterprise Geographic Information System 

(GIS) software, these human significant ranges may highlight growing substrates that are suitable 

for a national park, or agricultural production, and marginal urban greenspace. Gone is the need to 

sample every possible parcel of soil to figure out what it requires for a healthy plant. Currently, 

machine learning through k-means clustering analysis of readily available images allows for the 

extrapolation, and illustration of soil factors from relatively small sample areas to large swaths of 

similar landscape.  

In Canada, a licence is not required to fly a drone below 250 grams, as they are considered 

‘micro-drones’, and not included in the basic, or advanced operation rules of heavier unmanned 

aerial vehicles (UAVs) (Transport Canada, 2021). Truly, this is an opportune moment in time for 

any researcher interested in capturing high-resolution imagery with a relatively low barrier of entry.   

These maps would be immensely useful for re-cropping efforts, may they be manual, or 

robotic. Furthermore, this creates the possibility of aerial cropping, soil amendment, and 

fertilization, through the autonomous programming of payload carrying drones to spot significant 

areas and sow the relevant nutrients, endemic crops, bacteria, fungi, beneficial acids, and pH. 

 

1.1 Research Goals 

The steps required to create a relatively high-quality image of agriculturally viable 

landscape will first be explored. Then, a robust soil sampling method for a supervised k-means 
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clustering classification will be employed. In essence, K-means clustering analysis is a machine 

learning statistical method where entities are grouped into categorized clusters given shared factors 

(Askari et al., 2014; Kim et al., 2021) This classification is conducted on the natural colour bands 

of the electromagnetic spectrum, as well as statistical indices such as Principal Component 

Analysis (PCA). Lastly, a conditional generative adversarial network (cGAN) will be trained and 

evaluated for is efficacy in generating soil classification maps from natural colour images, which 

will allow analysts to forgo the k-means clustering classification step, and employ the model in 

novel areas, saving time, and, potentially, financial capital, within the realm of agricultural analysis. 

Therefore, this research design will answer the question of whether it is possible to use artificial 

intelligence to classify, and then generate illustrations of soil substrate quality using personal 

microdrones, and publicly available environmental spatial data.  It is hoped that factors such as 

local conditions of flora, soil type, and the degree to which a greenspace is managed will be 

internalized by the cGAN model. 

The following list distills directives related to achieving the goal of using cGANs to model 

soil conductivity. This variable was chosen because of its ease of attainment, and the amount of 

information that can be inferred from the single unit. Here, soil electrical conductivity corresponds 

to “crop yields, crop suitability, availability of plant nutrients, and the activity of soil 

microorganisms” (Ou et al., 2019). 

Itemized Goals: 

- Design a methodology that relates image mosaics to soil conductivity readings, while 

mitigating spatial autocorrelation. 

- Test the efficacy of using machine learning to classify soil imagery using k-means 

clustering. 

- Attempt to internalize a k-means clustering algorithm into a cGAN and cross-reference the 

generated images with ground truth data. Then, infer if this deep learning method is a viable 

alternative to manual soil collection in novel areas.  

- Ultimately, create a cGAN that is able to categorize soil electrical conductivity from natural 

colour images, and potentially be placed onto drones to lower variable costs for farmers 

and urban greenspace planners. 
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1.2 Study Area 

Figure 1-1 illustrates the study areas, which are three parks in central Toronto, Canada. 

The three parks that will be analysed are Riverdale Parks West, and East, and Don Valley Park.   

 

Figure 1-1 Sampling Areas in the Context of Central Toronto 
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Only a short distance from downtown Toronto, these three parks are centrally located within 

the city and are close to bus and subway routes. Riverdale Park West most directly serves the 

residential neighbourhood of Cabbagetown, though it is within walking distance of Yonge, and 

Bloor Streets. Riverdale East, which is located directly East of Riverdale Park West, serves the 

community of Riverdale North and is slightly further from Bloor Street. These two parks are quite 

well managed, as people regularly use these two locations for recreational activities. Hence, the 

quality of the soil for human significant, agricultural, or horticultural purposes, may be higher than 

in unmanaged areas. Lastly, Don Valley Park, is north of Bloor Street, and serves the community 

of the western Danforth. It is neither an actively managed woodland, nor greenspace. Unlike 

Riverdale Park West, which is known for its wetlands, and Riverdale Park East, which “has 

developed into a mature maple-ash woodland” (Toronto, 2022a), Don Valley Park contains large 

amounts of endemic stinging nettle, which is not very conducive to recreational activity. 

 These areas were chosen because of their proximity to the central downtown area of 

Toronto, which kept transit costs for the researcher within budgetary limits. Secondly, they are 

marginal urban greenspaces that could potentially be the site of future agricultural initiatives that 

make use of remote analysis and cropping. Finally, they are large open spaces with much soil to 

be analysed, where the drone has a low probability of coming in close proximity to structures, and 

retains the ability to capture high resolution images.  
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2 Literature Review 

2.1 Our Current Understanding of Soil Sampling 

 A precision agriculturalist must preoccupy themselves with accurate soil sampling, despite 

the high cost of equipment, and time investment required. Currently, machine learning is the most 

effective method of predicting the qualities of untested soil parcels with limited sample data 

(Zhang et al., 2021). Alas, including “abundant environmental covariate information” in 

conjunction with a semi-supervised classification produces higher quality results (Zhang et al. 

2021). These types of covariate environmental data include “elevation (m), slope gradient (%), 

plan curvature, profile curvature, relative position index (%), and topographic wetness index”, of 

which, many are available to Canadian researchers (Zhang et al., 2021). Such covariate data could 

be used in conjunction with local pH, electrical conductance, or temperature values to increase 

classification accuracy (Zhang et al., 2021).  

 How soil traverses agriculturally variable land helps researchers and farmers understand 

the distribution of elements needed to increase crop yield (Menzies Pluer et al., 2020). Unmanned 

aerial vehicles can be used to segment differences within a digital surface model to predict soil 

characteristics over larger areas (Menzies Pluer et al., 2020). This use of machine learning for 

predicting soil quality is supported by Jia et al. (2021) who recommend the use of high-resolution 

images captured from aerial devices to be used as sample data.  

 

2.2 Using GIS to Analyse Remotely Sensed Imagery 

Using enterprise GIS applications like ArcGIS, or the specialised photogrammetry analysis 

software CATALYST Professional, arithmetic functions can be employed on publicly available 

datasets of satellite imagery, like the United States Geological Survey’s Earth Explorer, to 

extrapolate agricultural conditions like pH and topsoil qualities (Esri, 2022; PCI Geomatics 

Enterprises, Inc., 2021b; U.S. Geological Survey, 2022). Alas, Earth Explorer does not provide 

centimetre scale imagery for free, as would be available with personal microdrone imagery, though 

they do make available Landsat-9 data without charge, which provides 30m spectral bands of the 

electromagnetic spectrum, including short wave infrared, and near infrared (U.S Geological 

Survey, 2020). These electromagnetic bands can be used to arithmetically interpolate factors such 
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as wetness, and vegetation indices in applications such as CATALYST Professional (PCI 

Geomatics Enterprises, Inc., 2021a; PCI Geomatics Enterprises, Inc., 2021b).  

For this analysis, the best attainable spatial resolution was five cm, which is higher than 

publicly available satellite imagery online. Xu et al. (2018) supports the use of “Very High Spatial 

resolution images” such as WorldView-2 (spatial resolution 1.84 metres) to “improve soil model 

performance”. In this case, the microdrone can attain an even higher spatial resolution.   

 

2.3 Issues Regarding Spatial Autocorrelation 

Spatial autocorrelation remains an issue in many environmental models where the location 

of samples cannot be explicitly chosen by a researcher, especially where there is a diversity of 

pattern (Hu et al., 2020). Where spatial autocorrelation is present, the axiom that samples are 

independent of one another is no longer true, which introduces bias into statistical analysis, and 

can result in the erroneous rejection of the null hypothesis (Dormann et al., 2007).  

Tools like Dronelink allow a researcher to create flight plans that when commenced 

autonomously control the drone by precisely guiding them to planned locations where imagery can 

be acquired (Dronelink, 2022). The grid of a potential flight plan can be utilized to quickly find 

and define soil collection sites as it can be used to sample points in the study area from a grid 

(Morrison et al., 2008). In this regard, any grid superimposed over the study area where latitude 

and longitude coordinates can be parsed is useful (Morrison et al., 2008). This way, the 

independence of samples can be assured in the data collection stage. 

The number of samples to acquire is a concern. There is much variability in GIS literature 

as most studies regard separate features. For analysis that falls within a broad range of country-

level guidelines, Huuskonen and Oksanen (2018) reiterate a minimum temporal resolution of five 

years, and a spatial resolution of 10 hectares, but concede that this is not enough for precision 

agriculture. Regarding ecological niche models, a sample size of 10-20% of total localities is 

shown to produce “similar models” (Boria and Blois, 2018). 

 In this case, they recommend sampling from “internally consistent” areas that have been 

split into management zones, while limiting the required training set (Huuskonen and Oksanen, 



8 
 

2018). Moreover, Huuskonen and Oksanen (2018) propose that these maps can be used with smart 

glasses in augmented reality suites to aid farming endeavours, where different types of 

categorizations may be projected over the ground to help an operator complete a large variety of 

tasks.   

2.4 Effective Agricultural Regeneration 

 Giller et al. (2021) express grave concern for the health of future agriculture and soil. There 

are many qualms derived from poor food system health, including “hunger, poverty, and obesity” 

(Giller et al., 2021). An industrialized agriculture’s over dependence on chemical fertilizers, and 

pesticides has begotten “poor quality food, environmental degradation, biodiversity loss, [and] 

exploitive labour relations and animal welfare” (Giller et al., 2021).  

That being said, “Regenerative Agriculture” without taking in account the local context 

may prove problematic (Giller et al., 2021). Their paper uses an “agronomic perspective” which 

is defined as a “perspective steeped in the use of plant, soil, ecological, and system science to 

support the production of food, feed, and fiber in a sustainable manner” (Giller et al., 2021). 

Potentially, this agronomic perspective can extend to the production of the aesthetic greenspace 

with the employment of machine learning models. Some papers discuss greenspace’s demarcated 

positive effects on urban health outcomes (Markevych et al., 2017; Vries et al., 2003).  

Moreover, other artificial intelligence research involving drones regards the amendment of 

already existing plants. Here, Chen and Li (2019) bring attention to the fact that 1/3 of the world’s 

food supply “relies on animal pollination”. They theorize an autonomous pollination effort that is 

operated through microdrones, and employs artificial intelligence (Chen and Li, 2019). In the case 

of the United Kingdom alone, artificial intelligence endeavours “could add $USD232BN” to their 

gross domestic product in the next decade (Chen and Li, 2019). Now, artificial intelligence, 

especially through artificial pollination, can improve “efficiency in our current farming methods 

to increase production and reduce wastage” while utilizing relatively less natural capital (Chen and 

Li, 2019). In essence, plans exist to create robotics enabled smart-farming initiatives stemming 

from the statistics of artificial intelligence. 
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2.5 Artificial Intelligence in Sensor-Enabled Robotics for Farming 

Computer-vision enabled microdrones can be used to recognize plants for pollination, to 

iteratively make up for the gap in pollination supply (Chen and Li, 2019). As pollination is 

“responsible for 90% of the living things on our planet”, it will be important to combat the pressing 

realities of pollination shortage due to pandemic colony collapse disorder, which affects the 

Western honey bee, and the overall increased demand for pollination services due to the general 

increase in agricultural activity (Chen and Li, 2019). The supervised classification of different 

ecosystems can allow these pollination operations to be tailor fit to certain geographies, and 

specific fauna.  

Ahn et al. (2018) also support precision farming with AI driven robots due to growing food 

security concerns. They postulate that autonomous robots would be especially important in areas 

where dense brush prevents a global positioning system (GPS) signal from reaching the device 

(Durand-Petiteville et al., 2018 in Ahn et al., 2018). Computer vision would be especially 

important for such an endeavour, as the logical next step, harvesting, has been made possible as 

well, with lettuce “center and stem” through a “peeling and suction mechanism” recognition 

system having achieved “100% and 81% accuracy respectively” (Hughes et al., 2018 in Ahn et al., 

2018). Furthermore, researchers have attained the function of fruit ripeness recognition with deep 

convolutional neutral networks, in the case of certain peppers, which help in increasing the 

efficiency of organizing labor efforts (Halstead et al., 2018 in Ahn et al., 2018).  

This computer vision would employ a cGAN, which is a computationally intensive task 

that involves using a neural network to train another neural network (TensorFlow Developers, 

2022). This technology can “accurately characterize complex heterogeneous spatial structures” 

and “can be reused effectively to generate multiple-scale spatial structures” (Chen et al., 2022). In 

essence, this tool is instrumental in achieving the ability to generate novel soil classification maps 

from natural colour imagery in a short amount of time. Where soil is heterogenous, this tool may 

provide time savings.  
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2.6 Greenspace and Health  

Jim and Chen (2006) have calculated a “conservative estimate” of peoples “willingness-

to-pay” to use urban greenspaces, in Guangzhou City, China, which is RMB17.40 every month. 

This is reminiscent of online subscription services and could prove to be a reasonable form of 

income for municipalities should people come to value greenspace cooperatively with policy 

makers. People in this area are accustomed to an entry-fee, with the figure “significantly associated 

with income” (Jim and Chen, 2006). In any event, any potential tax, or cooperative payment 

scheme could scale with income to provide proportional value proposition.  

 Vries et al. (2003) state that “people living in urban areas are generally found to be less 

healthy than people living in more rural areas”, with much of “this phenomenon… related to the 

greenness of people’s living environment”. People are shown to partake in healthy activities like 

“recreational walking and cycling” in natural environments rather than urban environments (Vries 

et al., 2003).  

Using computer-vision enabled microdrones, greenspace can be nurtured in urban 

microcosms to create a healthier human habitat. Behaviours may be altered by the presence of 

these greened zones, and “the absence of pollution”, in the sense that spontaneous recreational 

activities are encouraged, with people’s “mood[s] and ability[s] to concentrate” showing 

improvements with even only “pictures of natural settings” (Driver et al., 1991; Hartig et al., 1996; 

Ten Wolde, 1999 in Vries et al., 2003).  

The ability for a microdrone to both assess and amend soil quality would greatly assist the 

ability to meet environmentally conscious goals. Ultimately, Markevych et al. (2017) postulate 

relationships between urban health, and greenspace will be improved should active efforts focus 

on three main goals. Ultimately, drone agriculture may be a viable route toward securing these 

objectives. The first of these objectives is the introduction of greenspace to reduce the incidence 

of pollution exposure (Markevych et al., 2017). Secondly, marginal greenspace that has suffered 

from physiological stress should be amended, so that “psychophysiological stress” seen in 

“hormonal, cardiovascular, and musculoskeletal parameters” can be reduced (Markevych et al., 

2017). Finally, areas where greenspace-encouraged sporadic recreational activities occur should 

be maintained, as “social cohesion within the neighbourhood is related to human health and 
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wellbeing” (Rios et al., 2012; Fone et al., 2014 in Markevych et al., 2017). In essence, microdrones 

equipped with computer vision can strengthen these relationships. 

 

2.7 Acidic, Bacterial, and Fungal Soil Amendments to Mitigate Food Scarcity, Plant 

Disease, and the Runaway Effects of Agricultural Regeneration  

 Despite anecdotal reports subtropical areas of the New World experiencing large barriers 

to entry regarding soil analysis, small farms in Europe are well documented as less productive and 

requiring more costs at the government level (Toma et al., 2021). However, this type of small 

agriculture is noted as being “an important buffer against poverty for lower income rural 

households” while maintaining the natural land, community identity/heritage, and biodiversity 

(Toma et al., 2021).  

Alas, the transition from purely sustenance farming to productive farming puts a strain on 

this conservation, as there is a clear tension between “food availability” and “food system stability” 

(Toma et al., 2021). Ultimately, there is a clear need to educate younger generations on the value 

of small farms, and therefore sustainable agriculture (Toma et al., 2021). As micro-drones are a 

new consumer product, educating prospective farmers in their agricultural uses may prove an 

effective tactic in increasing the incidence of urban, and small-scale intensive agriculture. 

 

2.7.1 Micro Drones and Seed Pods 

As more people adopt farming techniques to live more resiliently, continued sustainable 

stewardship of greenspace should employ technical analysis applicable to the smaller, marginal 

settings of urban and household-rooftop producers. This would derive macro-scale improvements 

in food production, and security, potentially leading to systems for development in autonomous 

agricultural production.  

Mohan et al. (2021) propose that the use of drones to provide reforesting services can help 

introduce plant biodiversity into a drying area, strengthen natural capital for indigenous people, 

combat the incidence of soil erosion, mitigate disease, and take carbon out of the atmosphere to 

fight runaway climate change. These drone-based planting efforts can crop zones that are generally 
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hard to reach, or considerably labour-intensive like, “post-wildfire reforestation, mangrove 

reforestation, forest reforestation after degradation, weed eradication, and desert greening.” 

(Mohan et al., 2021). These proposed strategies can “reduce the lag time between forest stands” 

and “accelerate” the attainment of “ecological objectives” (Mohan et al., 2021). Satellite imagery 

can then be utilized to assess the success of such efforts, as well as recognize the areas needing 

artificial cropping services (Mohan et al., 2021). Mohan et al. (2021) recognize that local “biotic, 

and abiotic” conditions, as well as the “understanding of species-specific biological traits” are 

crucial in the enhancement of artificial seeding technology.  

With the implementation of machine learning, and drones into farming practices over a 

long period of time, runaway effects should be considered. Researchers must consider that 

haphazard changes to larger swaths of arable land can be dangerous, and introduce new forms of 

plant disease, infestation, and unintended soil changes. Even though deep learning and remote 

sensing allow farmers to impose precise, and practical changes on the environment based on what 

is significant to human needs, the long-term sustainability of imposed effects should be considered. 

Mohan et al. (2021) describe a “seed pod” which involves the encapsulation of a “processed” 

seed with “beneficial materials that aid in its dispersal and increase the regeneration success”. In 

any event, drones would be equipped with these seed pods, or “vessels”, and sent to “microsites” 

which are defined as “a small portion within an environment… that can facilitate seed 

germination”. These seed pods would then be altered for “condition-specific needs” and include 

different mixtures of “rooting substrate, nutrients, phytohormones, and mycorrhizal and bacterial 

symbionts”. Humic and fulvic acid could also be included in the mix, to stimulate “lateral root 

growth” and their uptake of nutrients, as well as “aid in the development of sustainable 

intensification” as per the findings of Canellas et al. (2015). Figure 2-1 shows a seed pod design 

that is scalable. 
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Figure 2-1 Potential Seed Pod Design 

 

2.8 Deep Learning with Conditional Generative Adversarial Networks for Farming 

 Lohit (2021) describe a process where reforestation jobs can be completed “nine times 

faster than other human planting systems” by using drones and deep learning analysis. This is done 

by tasking the drone to “hover on the deforested land… then shoot at seed at that particular location” 

(Lohit, 2021). Deep learning classifies the study area into five zones, “1. Road 2. Deforested Land 

3. Forested Land 4. Rocky Terrain, [and] 5. Buildings” (Lohit, 2021). Python, and TensorFlow are 

used to create these classes, while mission planning software is used to calibrate and direct the 

drone to areas of interest (Lohit, 2021). 

Uddin et al. (2019) illustrates covariate interpolative data, in the form of Principal 

Component Analysis, as also being helpful in strengthening classification models. Such a function 

reduces the number of dimensions, or factors (such as elevation, and reflection) present into 

variables that do not correlate highly with one another, to potentially increase the significance of 

the output model (Uddin et al., 2019).  

 Inoue (2020) describes soil analysis using drones as a “smart farming” technique that 

“support[s]… efficient, sustainable, and profitable crop production”. Inoue (2020) states that 10m 

or higher spatial resolution is appropriate for “agricultural regions of relatively small farmlands”, 

which corresponds with the needs of precision regenerative agriculture. A “constellation” of 

satellites or drones would support the statistical tools that work in conjunction with “big-data 

science” and seemingly provide the highest possible spatial and temporal resolutions for “big data 
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for agriculture”. Spectral analysis, and indices can be used to define and standardize the optimal 

amount of fertilizer content present in produce to provide farmers precise knowledge of how much 

fertilizer is needed, as well as the best time to harvest (Inoue, 2020). These indices include the 

normalized difference spectral, and vegetation indices (Inoue, 2020).   

Inoue (2020) supports these claims with the real-life example of France’s FARMSTAR 

service, which is “used by 18,000 farmers” who control 800,000 hectares of agricultural land. This 

service attains the imagery, and provides diagnostic information to these agriculturalists, which 

consists of “consultation for optimizing practical management of wheat, rapeseed, and other crops” 

Inoue (2020). The use of this service has shown a demarcated increase in productivity of “150-250 

Euro” per hectare, per year, “a 10-15%” increase of viable crop growth, and a “10-17%” reduction 

in fertilizer application – all for “10 Euro” per hectare per year (Inoue, 2020).  

 Tamayo et al. (2020) incentivise using many drones to analyse agriculturally viable land 

with a theorized modular design. This design includes sun-powered recharging stations for drones 

limited by battery life, which is a common concern for the “surveillance of large, inaccessible 

areas”, and would be included as a stop within its flight plan during the analysis mission (Tamayo 

et al., 2020). Tamayo et al. (2020) explore different configurations of recharging pads to optimize 

flight time. 

Chen et al. (2022) show that conditional generative adversarial networks are generally 

suited to “data-driven geosciences”. For this paper, a cGAN is used to extrapolate soil conductivity 

data to larger areas. Interestingly, pattern simulations have been composed for geological, and 

hydrological processes using these deep neural networks, with satellite imagery being used 

recently to simulate fluvial structures (Chen et al., 2022).  

 

2.9 Conclusion of Literature Review and Current Research Gaps 

 There is much to be discovered regarding optimal soil sampling rates, as there is probably 

not one concrete method that is applicable to all forms of productive agricultural operations. These 

forms would be of natural park conservation, agricultural analysis, and the reintroduction of 

endemic biodiversity into marginal urban greenspace. These types of zones pose different 

characteristics of accessibility, biodiversity, and human significance, which would alter the 
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constraints of any study. Alas, the present model will attempt to create a robust method of soil 

factor attainment, with the goal of large-scale standardization of human-significant soil 

characteristics for the internalization of categorizations into a deep learning model.  

In this case, those interested in precision regenerative agriculture would only need to 

procure a natural colour map of their study area and submit it into a one-click program for a 

categorized image. This would provide farmers who lack the finance or knowledge for such 

analysis, the ability to avoid the burdens of having to attain a personal drone capable of capturing 

covariate environmental data. This may involve licensing in some jurisdictions, due to the 

attachment of heavy spectral imaging equipment. Having to produce introspective factors such as 

normalized difference indices or principal components, and the need to complete their own k-

means clustering classifications can also be avoided.  

The reality is that these advanced geospatial services are generally available to those in 

more economically developed nations. It is imperative, the mitigation of the digital divide of 

precision regenerative agriculture tools, by the provision of easily accessible, open-source software.   
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3 Methodology of Mapping, Sampling, and Supervised Classification 

 Various marginal urban greenspaces in the City of Toronto, namely parks, are mapped 

using a DJI Mavic Mini 1 in conjunction with the flight planning software Dronelink’s mapping 

function. This drone weighs 249 grams, has a 12-megapixel camera, and can capture 4000x2250 

images at a 16:9 aspect ratio in red, green, and blue (DJI, 2022). These maps will be used to create 

supervised classifications of soil electrical conductivity with each image mosaic. These 

classifications will be used in conjunction with the natural colour imagery to create a generative 

model that converts the image mosaics into classified images relatively quickly. Illustrated in 

Figure 3-1, this model allows a drone operator to iteratively categorize the soil in novel areas 

without having to train and classify for each new area’s dataset.  

 

 

Figure 3-1 Model of Data Collection, Model Training, and Post Classification Accuracy 

Assessment 

 

Dronelink allows an operator to specify the overlap of each image taken, so an overlap of 

80% is used.  Flight durations are planned with battery life in mind, due to the drone’s small size, 

so operations are generally kept short – which limits the number of images that can be captured. 

This is one of the limitations of using a microdrone for photogrammetry. Also, the Mavic Mini 
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remains stable “at in wind speeds of up to 8m/s”, so it is imperative that weather in clear even 

more than other remote sensing contexts (DJI, 2022).  

Supervised classifications require training areas to relate broad regions of electromagnetic 

reflectance to others. Training areas for this analysis are created from the ground reading of soil 

electrical conductivity. To define these areas, points from a flight plan’s grid are taken to produce 

a soil sampling square, or polygon, if near an edge. These areas are chosen from a grid of squares, 

modulated by the boundary of the study area, to passively avoid spatial autocorrelation in the data 

collection phase. 

 If, per chance, there are too many grid squares to reasonably take soil samples from, due 

to a large area requiring many images, every other square may be sampled, or every third, and so 

on, Ultimately, this method of modulating the latitudinal and longitudinal grid squares of the flight 

plan to find training areas is supported by Morrison et al. (2008), who state that “grid-based 

systematic designs were more efficient and practically implemented than the others”, when 

considering the sampling of areas where “natural variability is high”.  

For consistency, images and soil samples were acquired at approximately midday during 

clear weather conditions. These images and soil samples must be captured on a same-day basis. 

This is due to the high-cost of purchasing high resolution satellite imagery. Purchased images may 

also not correspond to the day when soil samples were acquired. Micro-drones allow a researcher 

to create very high-quality image mosaics of any area of interest for only the cost of a computer 

and a drone.  

For the supervised classifications, their kappa coefficients are indicators of “agreement 

between the predicted and experimental results” and should be considered (Li and Zhang, 2017). 

The first study area, Riverdale Park East, is illustrated in Figure 3-2. Figure 3-3 shows the flight 

path that was taken by the drone during the mapping mission. 
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Figure 3-2 Image of Study Area – Riverdale Park East 
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Figure 3-3 Riverdale Park East Flight Plan 

 

The training sites created in ArcGIS Pro, were imported into CATALYST Professional. 

Figure 3-4 shows the approximate mapping areas, and sampling sites in a larger context. Open 
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Drone Map, the application used to create the image mosaics of the study areas, also outputs digital 

surface models of each area. (OpenDroneMap 2022). These will have the effect of strengthening 

model fit. 

 

 

Figure 3-4 Sampling and Mapping Sites in the City of Toronto. (Toronto, 2019; 2022; 2022b) 
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In order to state there is a relationship between the electromagnetic reflectance values 

present in the natural colour imagery, and the generated classifications of the cGAN, spatial 

autocorrelation must not be present. The Moran’s I statistic can be used to calculate if these clusters 

are statistically significant to determine the degree of spatial autocorrelation (Zhang et al., 2008).  

Regarding the image data that was captured for this analysis, the only sensors available on 

the Mavic Mini are correspond with the Red, Green, and Blue bands of the electromagnetic 

spectrum (DJI, 2022). Including an infrared camera on this micro would go over the 250g weight 

limit (Transport Canada, 2021).  

On the Dronelink mission planner, the mapping mission can be set to grid mode, which 

conventionally creates a much longer flight plan in duration. The software was used to derive the 

latitudes and longitudes of each training vector thus enabling a grid-based sampling methodology 

that avoids higher spatial autocorrelation in the presence of “natural variability” (Morrison et al., 

2008). Figure 3-5 illustrates these sample sites with green dots. Furthermore, the grid squares from 

where the sample sites are selected are marked with larger orange dots. 

Fortunately, spatial autocorrelation can be seemingly avoided in this analysis as both 

sample sites, as well the locations where images were acquired, can be actively collected in a grid 

pattern.  
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Figure 3-5 Flight plan, in grid mode, with superimposed green dots representing sample sites, 

and larger orange dots marking the grid squares from where they are attained.  

 

Starting from the first, northernmost, and triangular polygon created by the grid, the 

latitude, and longitude coordinates of each vector of every 20 th polygon are plotted as a soil 

sampling points. This area contains 27 eligible vectors/sampling sites from seven modulated grid 
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squares. As an example, Table 3-1 shows the training coordinates that were sampled in Riverdale 

Park West. They are hierarchically labelled under the modulated grid square that they are the 

vectors of. That is, squares of equal area superimposed over the study area, and soil samples are 

taken from the corners of each square. Spatial correlation is ultimately avoided because the squares 

are generally equally spaced out from one another. 

 

Table 3-1 Sample site vectors for Riverdale Park’s training areas which have been attained from 

the mission planning interface. 
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 For this analysis, an electrical conductivity reading was taken at the ground. Subsequently, 

for the supervised classification, the electrical conductivity measurements corresponded with a 

training area that was a two-metre buffer around the sampling site. This seemed to be a generally 

homogenous area of soil across the three mapped areas and produced classification accuracies that 

were acceptable to continue the analysis.  

To create the highest resolution image mosaics, drone altitude and image overlap were calibrated 

based on the findings of Dandois et al. (2015), who report in their modelling of forest structure 

that “no significant differences were observed at different levels of lighting, altitude, and side 

overlap”. The highest quality “estimates of canopy height… were obtained under optimal 

conditions of clear lighting and high image overlap (>80%)” (Dandois et al., 2015). Therefore, 

drone altitude for each study area was based on the avoidance of structures, while images were 

always captured with at least an 80% overlap.  

Figure 3-6 illustrates the second study area, Riverdale Park West, with training sites, and their 

relative grid squares marked in similar colouring.  
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Figure 3-6 Image of Study Area – Riverdale Park West, with training areas  

  

Accessibility and clearance of hilly terrain are considered with knowledge of the area. 

Therefore, this flight is to be conducted at 100m instead of ~80m. Nevertheless, seven training 

sites were attained (as with the first study area). Alas, the northernmost potential training site, from 
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where the grid is modulated to avoid spatial autocorrelation, was chosen because it contains the 

first ground-accessible sampling vectors/sites. In this case, the more northern intersections are 

available for aerial analysis, but are blocked on the ground by path, and wall. Here, every eighth 

grid square was chosen to be a potential training site. Finally, Figure 3-7 outlines the flight plan 

and mission details for this site.  

 

 

Figure 3-7 Riverdale Park West Flight Plan with mission details. (100m with 80% image overlap) 
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The third, and final study area is Don Valley Park, an area situated just north of the Don 

Valley Parkway.  Figure 3-8 illustrates this study area and flight plan, while Figure 3-9 shows 

where soil will be sampled. In this case, every 4th grid square is chosen to attain 18 sample vectors. 

  

 

Figure 3-8 Don Valley Park Flight Plan and Mission Details (95m with 80% image overlap) 
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Figure 3-9 Don Valley Park Soil Sampling Sites  
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3.1 Training Sites, EC Readings, and Supervised Classification  

At each training site, a soil electrical conductivity probe was inserted 7.62 cm (3”) into the 

soil. The reading is given 10 seconds to stabilise, and the result is joined to the latitude and 

longitude coordinate in the database. An attempt was made to collect all readings as quickly as 

possible, to reduce environmental variability due to changes in weather. 

Additionally, a texture layer, showing the homogeneity of the red band, is created for each 

raster with a search radius of 10 metres, as, at this scale, that search radius resulted in less noise, 

and a higher classification accuracy. Then, a Principal Component Analysis is completed using 

these five bands, with an output of three eigenchannels. These artificial bands are used to increase 

the classification accuracy of the supervised classification.  

Finally, three supervised classifications were completed with and without the supplemental 

bands, in order of their creation, to find the highest classification accuracies and Kappa 

Coefficients. For this classification, both the orthophotos, and digital surface models of the three 

zones are merged into single raster datasets. 

 Here, the electrical conductance values are categorized by quantiles into three groups. 

These groups, Low, Medium, and High, are coloured with Red, Orange, and Green, respectively. 

For added accuracy, ‘Built-Area’, and ‘Water’ classes were created to mask these areas that cannot 

support plant life. Figure 3-10 illustrates the training sites, to scale, that will be used for the 

supervised soil classification of Riverdale Park East. 
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Figure 3-10 Example of training areas, to scale, consisting of 2m buffers around each sample 

region (Toronto, 2019; 2022; 2022b) 
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3.2 Deep Learning Generation of Soil Quality Maps from Natural Colour Imagery 

Finally, an attempt was made to internalize the model into a cGAN. Using deep learning 

software, the natural colour maps, created with drone imagery, will be fit to the categorized maps, 

created in GIS software. If successful, one natural colour map can be used to instantly create one 

precise soil classification map. 

Using TensorFlow, once the natural colour images have been classified, a training dataset 

is created for an image-to-image generative model (TensorFlow Developers, 2022). In this case, 

TensorFlow’s pix2pix toolset, which is a conditional generative adversarial model, is used 

(TensorFlow Developers, 2022; TensorFlow, 2022). Figure 3-11 shows an example of the training 

data used for this model. Ultimately, this model creates soil quality maps from natural colour 

images by internalizing the difference between the photogrammetry, and supervised classifications.   

 

 

Figure 3-11 Example of training image used for generative image model  

 

For the generative model, 210 training images were created from the natural colour and 

classified images of the three study areas. These images are flipped vertically, and horizontally to 

triple the size of the training set. This allowed the cGAN to internalize soil characteristics while 
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ignoring the directional cardinality of the images.  The training set consists of 1:500 and 1:900 

scale images. Maps created from the generative model should aim to for input images of these 

scales. 

Finally, another image mosaic was created to test the prediction accuracy of the generative 

model. This site is sampled like those of the training set but is used solely to cross reference the 

measured soil qualities with those generated using TensorFlow. 

In essence, this cGAN operation will result in a geospatial “image synthesis” that aims to 

produce below-topsoil predictions similar to “subsurface geological models” seen in certain 

modern geospatial analyses that employ similar techniques (Azevedo et al. (2020) in Chen et al., 

2022). This image synthesis, or generation, results in soil classification maps as depicted on the 

right in Figure 3-11. These geospatial models are generated using only natural colour images, such 

as the left side of Figure 3-11, as input data. Alas, “large-scale structures” require “deeper neural 

network architecture and a larger number of features” which require a relatively large amount of 

graphical processing (Chen et al., 2022).  
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4 Analysis 

 The maps of Don Valley Park, Riverdale Parks East, and West were attained at a five cm 

spatial resolution and aggregated to a single raster file. Table 4-1 details the results of the 

supervised classifications. Here, the inclusion of the digital surface model layer improves overall 

classification accuracy. Table 4-1 details the total area, and spatial autocorrelation statistics for the 

three areas. Here, the highest coefficient is seen when all supplemental layers are included in the 

model.  

 

Table 4-1 Supervised Classification Outcomes  

 Average 

Accuracy 

Overall 

Accuracy 

Kappa Coefficient and 

Confidence Interval at 95% 

Standard Deviation 

Red + Green + 

Blue (RGB) 

67.46 % 62.01 % 0.62725 +/- 0.00037 0.00019 

RGB + Digital 

Surface Model 

(DSM) 

71.38 % 64.60 % 0.64738 +/- 0.00047 0.00024 

RGB + DSM + 

Homogeneity 

(TEX) 

71.60 % 64.76 % 0.64836 +/- 0.00048 0.00024 

RGB + DSM + 

TEX + PCA 

70.34 % 64.76 % 0.65085 +/- 0.00041 0.00021 

 

These figures imply that both the producer, and the model are reliable around 2/3 of the 

time.  Here, the Kappa Coefficient is a measurement of interrater reliability between -1, and 1 

(McHugh, 2012). In any event, a coefficient of 0.65, alongside the average, and overall accuracies 

of 70.34, and 64.76%, respectively, are indeed moderate. Li and Zhang (2017) consider the kappa 

coefficient to be moderate between 0.4, and 0.7, and “almost perfect” beyond that. Furthermore, 

Bogdan et al. (2022) consider kappa coefficient values in the 0.7-0.8 range to be a “Substantial 

agreement”. Table 4-2 shows the confusion matrix of the highest performing supervised 

classification.  
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Table 4-2 Confusion Matrix of Supervised Classification with DSM, TEX, and PCA layers 

 

 

Classified Data 

Reference Data  

 

Totals 

No EC Low EC Med/High 

EC 

Built Water 

No EC 36.31 25.35 25.37 12.97 0 100 

Low EC 16.67 61.06 22.25 0.03 0 100 

Med/High EC 7.88 11.73 72.73 7.66 0 100 

Built 1.19 0 1.08 97.72 0 100 

Water 6.04 0 3.48 6.62 83.87 100 

Totals 68.09 98.14 124.91 125 83.87 500 

 

Within the confusion matrix of the most successful supervised classification, we can see 

that the Built, and Water layers have the highest correspondence with their reference data, at 97.72, 

and 83.87% respectively. These features are quite distinct from foliage, and generally homogenous, 

which contributes to this relatively higher percentage. Of the soil classes, Med/High EC has the 

highest percentage in the confusion matrix, at 72.73%, while No EC has the lowest percentage 

correspondence with its reference data, at 36.31%. Table 4-3 shows that the three sampling areas 

exhibit only negligible to mild spatial autocorrelation, though the confidence intervals range from 

66% to 91%.  Furthermore, the overall spatial autocorrelation statistic of all sites is 0.08 with a p-

value of 0.31. 
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Table 4-3 Parameters of the Study Areas  

Parameters     Results   

Study Area Date of 

Analysis 

Area 

(ha) 

Area 

(sqkm) 

Samples Average 

Electrical 

Conductance 

Moran’s 

I of 

Sample 

Site 

Moran’s 

p-value 

Riverdale 

Park East 

2022, 

May 

20th 

~7.2 0.071 27 0.189 -0.079 0.33 

Riverdale 

Park West 

2022, 

May 

30th 

~4.3 0.042 23 0.278 0.33 0.09 

Don Valley 

Park 

2022, 

May 31st 

~1.6 0.016 18 0.083 -0.04 0.87 

All Sites 2022, 

May 20th 

– 31st  

~13.

1 

0.13 68 0.191 0.08 0.31 

 

 Figure 4-1 illustrates a side-by-side comparison of the image mosaics and the soil/land 

classifications. The Red band shows areas classified as ‘No EC’, or no electrical conductivity. 

These areas are measured as zero (0) conductivity with the soil probe. The Low level, in orange, 

shows areas with 0.1 to 0.2 EC. Finally, the Medium/High aggregation is coloured in green, and 

shows areas with 0.3 electrical conductivity or higher.  

   



36 
 

 

Figure 4-1 Side-by-side view of image mosaics, and Soil Classes (from supervised 

classification).  
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Initially, Figure 4-2 shows a natural colour image of the greenspace in question – 

something that a consumer drone can capture. Subsequently, Figure 4-3 is the result of the original 

supervised classification of the site. Finally, Figure 4-4 is the attempt that uses TensorFlow to 

create a supervised classification map from the natural colour image, using only training images 

like that of Figure 3-11. Figure 4-4 is shown in a lower resolution because this resolution, 256x256, 

is what the cGAN is calibrated for. For a higher resolution, more computational power is required 

to train and run the model for output. 
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Figure 4-2 Natural Colour Image of Riverdale Park West, on May 30th, 2022 
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Figure 4-3 Supervised Classification of Figure 4-2’s Soil Quality created in CATALYST 

Professional 
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Figure 4-4 Generated Soil Classification Map using TensorFlow’s pix2pix toolset. 

 

 Figure 4-5 shows a 1:500 scale image of High Park, during the cherry blossom season, 

acquired on May 5th, 2022. In this image, there are built, green, and barren areas. This is an 

image that was not included in the training set. Subsequently, it was tested with the generative 

model, which shown in Figure 4-6.  
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Figure 4-5 A 1:500 image of High Park on May 5th, 2022 
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Figure 4-6 A soil classification map generated, using TensorFlow, from the High Park image 

mosaic. 

 

 Finally, an image mosaic with its own soil samples was compared against the results of 

generated images to provide a post-classification accuracy assessment of the soil classifier. Figure 

4-7 shows an image mosaic of a portion of the Evergreen Brick Works, with electrical conductivity 
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measurements taken at 30 soil sampling points. In this case, the grid-based sampling methodology 

is also applied to derive soil conductivity validation/accuracy-assessment sites.  

 

 

Figure 4-7 An image mosaic of Evergreen Brickworks acquired on June 8th, 2022, with the 

coordinates of the validation soil conductivity sites. 
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 In the sample set, a few locations are inaccessible, or have no reading because the 

coordinate is in a large body of water, or is on top of a built path, made of inert material. No 

conductivity readings can be made at these locations.  

 The post-classification accuracy assessment provided by the validation points at Evergreen 

Brickworks shows a 33% classification accuracy attained by the generative classification model, 

with 10/30 generated soil electrical conductivities successfully cross-referenced and shown to the 

reflect the ground truth. When non-soil classes are removed from the analysis, the generative 

model exhibits a 9/26 success rate, or 34.6%. Finally, Table 4-4 shows the confusion matrix 

derived from the success of TensorFlow’s generation of supervised classifications, including non-

soil classes. 

 

Table 4-4 Confusion Matrix of TensorFlow's Generated Supervised Classification of Soil EC 

Soil Class Ground 

Truth (n) 

Generated 

(n) 

Correct Accuracy User’s 

Accuracy 

Producer’s 

Accuracy 

F1 

None 0 12 0 60% 0 

(undefined) 

0 

(undefined) 

0 

Low 13 10 6 63.33% 0.6 0.46 0.52 

Med/High 13 4 3 63.33% 0.75 0.23 0.35 

Built 1 4 1 90% 0.25 1 0.4 

Water 3 0 0 90% 0 

(undefined) 

0 

(undefined) 

0 

 

 

 This confusion matrix confirms that, using TensorFlow’s cGAN model, 10 out of 30 

generated images were successfully cross referenced as corresponding with the ground truth. The 

third column shows the count of correctly generated classifications by soil class. These results are 

interesting, as the model was trained using imagery from different locations. Ultimately, the “Low” 

electrical conductivity classification shows the highest F1 score within the confusion matrix, which 

is 0.52. The F1 score is the average of both the User’s and Producer’s accuracies. The combination 

of these two scores relates to the strength of the model for each classification from 0-1. Therefore, 
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the “Low” classification has the highest likelihood of being classified correctly by the model. 

Moreover, both the “None” and “Water” classes exhibit undefined User’s and Producer’s 

Accuracies due to there being no incidence of correct classification for these two. Additionally, no 

samples had zero conductivity, while no water classes were generated by TensorFlow for the test 

samples. Figure 4-8 shows a cartographical illustration of the generative model’s post 

classification accuracy assessment. 
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Figure 4-8 Results of post-classification accuracy assessment including Built, and Water classes.  



47 
 

5 Discussion and Conclusion 

5.1 Discussion 

The three sampling sites sum to a total of 0.13 square kilometres, whereas total greenspace in 

Toronto amounts to 121.12 square kilometres (Toronto, 2019). Therefore, for this analysis, 0.001% 

of total greenspace in Toronto is used as training data. However, if considering only the 

neighbourhoods that the sampling areas are in, which are Playter Estates-Danforth, Cabbagetown-

South St. James Town, and North Riverdale, there are 0.66 square kilometres of greenspace in 

total. Table 5-1 shows the relative size of the training sample area when compared to the total 

amount of greenspace in the City of Toronto, and the local neighbourhood region.  

These sampling regions do have natural variability but can be considered a coherent biome 

within a political boundary. The results of the supervised classification are most accurate within 

the mapped regions, then to a lesser extent in the local neighbourhood, and political regions, and 

then least accurate when used to generate statistics for peripheral areas. Ultimately, as proximity 

from the sampling areas increases, the reliability of the model decreases, and Table 5-1’s statistics 

imply this. Importantly, while natural soil electrical conductivity data is noisy, coherence of data 

can be attained if sampling methodology remains constant. 

 

Table 5-1 Relative Sample Size given the Local, and Broad Geographic Region 

Parameters Sampling Areas 

 Total City 

Greenspace (Toronto 

Greenspace 

Population) 

Local Neighbourhood 

Greenspace (Local 

Greenspace 

Population) 

Sample Greenspace 

Area (sq km) 121.123 0.660 0.13 

Relative Sample Size 

(%) 

0.108% 19.740% 100% 

 

 It should be noted that the samples were taken at around midday on each respective day of 

analysis. Even though some areas look to be quite green and are classified as having a low electrical 
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conductivity, subtle soil conditions reflect factors like “structure, texture…, topography, and the 

quantity and distribution of crop residues” (Kitchen et al., 2003). Confusingly, in some areas, like 

Don Valley Park, there are many endemic plants, with dry soil, and seemingly no electrical 

conductivity. Furthermore, in Riverdale Park West, even though there is a large flat grassland, 

electrical conductivity seems to be moderate to high in many places, which is probably due to the 

local maintenance of this park as opposed to the wild growth of the former.  

On the date of acquisition, the water bodies in these images were filled with plants. 

Interestingly, the areas in these water bodies with plants are classified as soil with electrical 

conductivity, instead of as water. As a result, inherent differences in local flora must be accounted 

for with a proportional increase in sample size compared to their variance. Also, the generated 

images produce tertiary hues at the borders between two classes which can introduce bias into the 

analysis when visually interpreted.  

The images were all acquired at a five cm spatial resolution, but some artifacts persist near 

the edges of maps, especially near trees, due to there being fewer datapoints in those regions. 

Ultimately, any aerial cropping mechanism would be useless in these canopy regions given a, 

frankly, non-existent accuracy.  

Given the current strengths of the model over bare soil, a drone can theoretically fly over, 

run the neural network using live images, and iteratively gain insight into the conductivity of the 

soil in almost real time. In essence, the speed of the model would be limited of the strength of the 

on-board computer’s central processing unit.  

In any event, an overall accuracy of 34.6% leaves much room for improvement. In general, 

where the topsoil is obscured by dense foliage, grass, or canopy, the readings are not very accurate. 

The reliability of soil conductivity readings in each location may also be variable, as a single 

reading is taken from each coordinate. Finally, the readings were taken on the same day, though 

not at the same exact time. Ultimately, changes in weather may have occurred between the capture 

of the image mosaic, and the soil conductivity readings, weakening the cGAN’s ability to 

internalize soil conductivity.  

In essence, the ability to analyse areas under the canopy, allowed by 3-dimensional inputs 

into the k-means clustering classification, may provide notable improvements in accuracy. 
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Furthermore, as only the red, green, and blue bands of the electromagnetic spectrum were included, 

different bands should be considered. Though not available for this analysis due to cost constraints, 

infrared cameras are commercially available for agricultural remote sensing and can be readily 

included as a factor. 

 

5.2 Conclusion 

For all intents and purposes, this generative model allows a soil analyst to run the same 

supervised classification on any natural colour image. Though, the results here correspond with an 

urban, and temperate city. Furthermore, training, and validation data are limited to a relatively 

green region in the summer. However, if the duration between soil samples correlates with the 

seasonal changes of the study area, soil quality can be approximated elsewhere in the region with 

a degree of confidence. In any event, the model can be perpetually updated with new training data.  

This model is strong because it can be applied using open-source software, and 

microdrones, which both lower the barrier of entry. That being said, not all places have the same 

guidelines regarding UAVs. Furthermore, some steps of the process can be improved with stronger 

hardware, as a dedicated graphics processing unit would speed up the cGAN’s training. 

This model exhibits a final accuracy of 33% and is quite weak. This may be explained by 

a lack of input data, or training time. A large time investment must be made into the cross 

referencing of the final model output with the real world, so it is important that the dataset is trained 

on as much data as possible before being utilized in the real world.   

For greenspace initiatives with a fixed geographic scope, this model can theoretically 

operate concurrently to a changing climate. In this case, past data could be discarded as quickly as 

a fixed temporal resolution of the soil data sampling grid. Whereas, for projects that potentially 

build large datasets over time, a relatively powerful computer would be advisable, with 

proportional upgrades to major components to preserve the speed of calculation. 

Future researchers may explorer similar image to image transfer methodologies with a 

larger sample set, or with a different sampling, and training image methodology. Furthermore, the 

strength of the model’s fit may also scale with the power of a dedicated graphics card. Conversely, 
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a more effective sampling methodology may beget models with higher correspondence between 

the natural colour, and generated imagery, and therefore require less time to calculate.  

The results of this research should contribute to deep learning research with remote sensing. 

There is a large potential for the generation of high quality, and useful data from noisy inputs given 

the current artificial intelligence tools available.  

 

5.3 Limitations 

In general, when considering the generated imagery, areas that are obscured by large 

foliage beget a high degree of uncertainty for visual analysis. Higher resolution digital elevation 

models created with light imaging, detection, and ranging (LiDAR) that provide a factor related to 

soil conductivity that is not obscured by trees may be crucial in increasing generated image 

accuracy. In general, areas with sparser greenery showed the highest conductivity estimate 

accuracy. Conversely water showed a very low classification success, with many ponds being 

classified as having zero electrical conductivity. 

The battery life of the microdrone is the limiting factor in this case, as both a longer flight 

duration, and a better resistance to weather, like wind, would be improved by a stronger battery. 

With these improvements larger, and higher quality maps can be obtained. 

Training site accessibility is another limitation. Where there is a large body of water, it 

proves difficult, and sometimes impossible to get a local soil electrical conductivity reading. Lastly, 

the time in between mapping, and the collection of samples should be considered, as there is always 

a time delay between the two. Should a weather event, like rain, alter the composition of the soil, 

another orthophoto would be required to retain sampling accuracy. 

These limitations may be attributed to the low sample sizes of the training, and validation 

sets. Ultimately, only four urban green spaces, which are each managed differently, are included 

in this model. The grid-based sampling methodology supports the large degree of “natural 

variability” of the included landscapes and can theoretically be applied to areas that can be 

iteratively included in the model (Morrison et al. 2008). The limiting factor with a larger sample 
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size would be the strength of the processing power needed to internalize the soil biomes into the 

model of the cGAN.  

 Where these generated images are successful creates an opportunity to understand how 

local factors of growth contribute to the phenomenology of local greenspace. There is an 

opportunity to attain a broader range of ground truth data to increase interpretability of marginal 

urban greenspace.  Readily available infrared, and LiDAR cameras that can fit onto drones may 

provide a cost-effective solution of attaining another band of the electromagnetic spectrum for the 

analysis. Furthermore, research into other types of deep neural networks should be used in 

conjunction with soil analysis, to find the method which achieves the highest classification 

accuracy when cross-referenced with ground truth information. Finally, the model must be trained 

at a higher resolution, which would be possible with more computational power. This model is 

calibrated on a 256x256 pixel image, which may have introduced artifacts into the input image 

mosaics and decreased the strength of the cGAN’s classification. Ultimately, stronger computers, 

or more processing time with the available resources would be required to see if higher resolution 

images provide improved post-classification accuracy results. 

 Potentially, the inclusion of infrared and LiDAR datasets may tackle the issues seen with 

this current methodology. Hypothetically, where there is a clear line of site to the ground, without 

much greenery to obscure the topsoil, the model would perform better. Where the line of site is 

broken, accuracy sharply decreases, hence the need for three-dimensional data under the canopy, 

and near to the ground. In any event, this type of analysis likely requires datasets that include the 

highest resolution input imagery available, higher-dimensional data, as well as a broader range of 

the electromagnetic spectrum which can be measured by researchers utilizing a drone. Finally, soil 

conductivity readings must be captured as soon as possible after the images are attained to mitigate 

subtle changes in weather which may affect soil conditions. While this model’s success rate is 

34.6% overall, its strengths may help researchers understand the datatypes, and practices that can 

be used in the future to increase efficacy. 
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