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Abstract 

Canada’s solar energy industry has seen significant growth in recent years. More 

specifically, southern Ontario, Canada’s most densely populated region, hosts over 100 

industrial-scale solar farms. These large arrays of interconnected solar panels convert 

incoming global horizontal irradiance into electricity. This study is a location-based 

analysis investigating the suitability of southern Ontario’s lands for hosting solar farms. 

The objectives are: (1) determine the most applicable variables and methods that are 

replicable in the southern Ontario region; (2) identify and analyze the amount and location 

of suitable areas; and (3) understand and explain any discrepancies between the locations 

of existing solar farm power plants and optimal locations. This research produces a land 

suitability model of southern Ontario’s solar farm capacity. It utilizes an analytical 

hierarchy process, a type of multi-criteria evaluation, in order to identify criteria, classify 

and weigh variables, and overlay inputs. The data employed are incoming solar radiation, 

cloud cover, land use, hydro transmission lines, major road networks, slope, and cultural 

areas. The results suggest much of the northern portions of southern Ontario are not well 

adapted for hosting solar farms, while large parts of southwest and west-central are very 

suitable or mostly suitable. In particular, a west-central area remains untapped for solar 

farming, despite being highly suitable. These results are then compared to the approximate 

locations of existing solar farms, and discrepancies are discussed. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

While there is no official definition of what constitutes a solar farm, Jones et al. (2014) 

describe it as “large arrays of interconnected solar panels that work collectively to capture 

sunlight and convert it directly into electricity.” Solar farm development began in 

California in the early 1980s, and started to accelerate in the early 2000s when financial 

incentives for solar energy were introduced in Germany. Since then, several countries such 

as China, USA, Mexico, Spain, Germany, Portugal, Italy, France and the UK have seen 

solar power plants grow in both size and quantity (Jones et al., 2014). A typical solar farm 

requires 15 hectares of land, with roughly 30% of the total area being covered by up to 

20,000 solar panels. This generates around 5 megawatt-peak (MWp), enough energy to 

provide electricity for up to 1,200 homes. However, several sites are much larger, some 

producing up to 145 MWp, with developments continuing to grow in scale (Jones et al., 

2014). 

Identifying optimal solar farm locations is essential for the solar industry surge. Research 

investigating ideal solar farm sites has been conducted using a variety of data and methods, 

often utilizing a Geographic Information System (GIS) in a location-based analysis (Suh 

and Brownson, 2016). These studies are important for maximizing solar energy gathering 

efficiencies while ensuring suitable areas are selected for such land-intensive endeavours. 

By integrating several important variables into a GIS and performing suitability modeling 

analyses via a multi-criteria evaluation, suitable locations can be identified and unsuitable 

locations can be negated (Uyan, 2013). 
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With large amounts of available land, a high per capita energy demand, and public policies 

supportive of renewable resources, Canada is primed to gain a great deal from solar energy. 

However, with a high latitude and consequently less solar radiation relative to much of the 

world, locating ideal solar farm sites will be an important undertaking (Barrington-Leigh 

and Ouliaris, 2017). This study will aim to identify optimal solar farm sites in southern 

Ontario, Canada’s most densely populated region (Barrington-Leigh and Ouliaris, 2017). 

1.2 Study Objectives 

Jones et al. (2014) succinctly list key development criteria for potential solar farm sites, 

which include: a large plot of land (a minimum of 10-20 hectares in the low grade 

agricultural category), flat ground, away from public vantage points, easily accessible, not 

prone to flooding, avoids sensitive areas, and close to power lines. Previously conducted 

research falls in line with these criteria, and use various data and analytical methods to 

produce results (Chen et al., 2014). As such, no method has proven to be more effective 

than others due to the variability in study areas and available data. With these 

considerations, this major research paper has the following objectives: 

1. Evaluate previously conducted studies on solar farm site selection using GIS in 

order to determine the most applicable variables and methods that are replicable in 

the southern Ontario region. 

2. Using discoveries of previous research, establish a methodology for identifying (a) 

how much area of southern Ontario is suitable for solar farms; 

(b) where the most optimal areas for solar farms are in southern Ontario; and 

(c) complete a statistical analysis on the results. 



3 

 

3. Understand and explain any discrepancies between the locations of existing solar 

farm power plants and optimal locations. 

This third objective may involve some speculation as land cost and availability data, which 

are needed to perform a thorough investigation of this third objective, will likely be limited 

or unattainable. 

1.3 Study Area 

Most studies locating optimal solar farm sites focus on warm, sunny climates, such as 

Turkey (Uyan, 2013), Australia (Law et al., 2014), California (Hamada and Grippo, 2015), 

Oman (Charabi and Gastli, 2011), and India (Mahtta et al., 2014). These areas tend to have 

more solar energy potential than areas with more variable seasons, cloud coverage, and 

less solar irradiance (NASA Surface Meteorology and Solar Energy, 2008). Accordingly, 

little research has been conducted on locating optimal solar farm sites in Canada, a country 

with relatively less solar radiation than the study areas of most of the literature (NASA 

Surface meteorology and Solar Energy, 2008). 

However, Canada’s per capita energy consumption is considerably higher than other areas 

of the world. With an average of 200 kilowatt hours (kWh) per person each day, compared 

to Europe’s average of 120 kWh or Hong Kong’s 80 kWh, heavy investment in the 

renewable energy sector could help Canada move away from fossil fuel consumption in 

order to reduce its carbon footprint (Barrington-Leigh and Ouliaris, 2017). Barrington-

Leigh and Ouliaris (2017), in their extensive spatial analysis on Canada’s renewable energy 

landscape, offer valuable insight into solar farming in Canada and argue Ontario is one of 

four provinces with enough solar radiation and energy demand to justify utility-scale solar 

farm development. Likewise, Walker et al. (2014) rationalize Ontario’s growing renewable 
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energy sector, claiming its relatively large population, increasing energy demands, and 

limited non-renewable resources position Ontario to gain more from investment in 

renewable energy than any other province. 

Economically, this is a challenging task as Canada’s cost of 30-41 cents per kWh using 

solar energy is much higher than in places with more solar energy potential. While Canada 

possesses more than enough land needed for solar farms to completely meet the energy 

demand (estimated to be 125,000 square kilometres for Canada’s 2010 energy demand), 

the cost of solar panels prohibits this possibility (Barrington-Leigh and Ouliaris, 2017). 

However, the price of photovoltaic (PV) solar panels fortunately has been dropping and is 

expected to continue falling (Barrington-Leigh and Ouliaris, 2017). While this has allowed 

solar farming in Canada to become a reality, selecting the most suitable locations for solar 

farms could maximize energy potential and conversion efficiencies. 

This study investigates solar energy potential in southern Ontario (Figure 1.1). The area 

was chosen due to its substantial size and the analyst’s familiarity with the location. 

Previous research on PV solar plant potential examines large study areas, such as the entire 

State of Colorado (Janke, 2010) or the Country of Oman (Charabi and Gastli, 2011), as 

local variations of important factors like weather patterns and solar radiation are likely 

negligible. This consideration combined with local familiarity, access to data of the 

southern Ontario region, and Ontario’s efforts toward clean energy through the Green 

Energy Act (Ontario, 2016) and the Ministry of Energy’s Long-Term Energy Plan 

(Ministry of Energy, 2017) make southern Ontario an appropriate study area. 
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Figure 1.1: Southern Ontario study area (denoted in red/brown) 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Relevant Research 

The examination of solar power plant site selection is not a recent endeavour, with research 

dating back to the early 1980s and prior (Heid and Trotter, 1982). However, most literature 

utilizing a GIS to identify suitable solar farm sites has been produced since the early 2000s 

(Suh and Brownson, 2016). In much of the literature that focuses on solar farm site 

selection, several variables reappear. Social, technical, economic, environmental, and 

political factors have all been incorporated in studies investigating optimal solar power 

plant locations (Sindhu et al., 2017). Vafaeipour et al. (2014) utilize aspects of social 

acceptability, demand for electricity, and effect on progress of surrounding regions, among 

economic, environmental, and risk variables in their solar project prioritization of Iranian 

regions. Similarly, Singh et al. (2016) integrate social acceptability as well as state-specific 

government policy as factors in their study of solar energy potential throughout India. 

However, social and political variables are minimally used throughout the literature in 

comparison to technical, economic, and environmental considerations. Social and political 

data are often variable over time and difficult to account for, and are therefore rarely seen 

in these types of analyses (Brewer et al., 2015). As such, most applicable studies use some 

combination solar radiation, land use or land structure, topography, and climate inputs 

(Carrión et al., 2008; Janke, 2010; Charabi and Gastli, 2011; Uyan, 2013; Chen et al., 2014; 

Mahtta et al., 2014; Sánchez-Lozano et al., 2014; Tahri et al., 2015; Effat, 2016). 

Suh and Brownson (2016) categorize each variable as either a factor variable or a constraint 

variable. Employing variables as constraint measures is a trend common among the 

literature (Carrión et al., 2008; Uyan, 2013; Mahtta et al., 2014; Effat, 2016; Singh et al., 
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2016). These negative indicators limit or reject an area’s suitability (Effat, 2016; Suh and 

Brownson, 2016). Conversely, factor variables enable the identification of high-suitability 

areas and allow for the assessment of their suitability for solar farm development (Suh and 

Brownson, 2016). 

2.2 Factor Variables 

Solar irradiance is most often found in existing studies regarding solar farms. In particular, 

direct normal irradiance (DNI) and global horizontal irradiance (GHI) are the prominent 

inputs in much of the literature (Suh and Brownson, 2016). DNI is the “direct irradiance 

received on a plane normal to the sun over the total solar spectrum” (Blanc et al., 2014). 

This variable is an important indicator of concentrated solar thermal (CST) potential, a 

method of solar energy collection using mirrors to concentrate sunlight onto receivers and 

convert it to thermal energy (Office of Energy Efficiency and Renewable Energy, 2017). 

Law et al. (2014) found that accurate 2-day ahead DNI forecasts could increase revenue 

and decrease operational costs of CST power plants, as such information can optimize the 

charge and discharge of thermal energy storage. However, Law et al. (2014) also make a 

clear distinction that DNI is used for CST potential, and is not directly used for PV solar 

power potential. GHI, which is which is the sum of DNI, diffuse horizontal irradiance 

(DHI), and ground reflected radiation (National Renewable Energy Laboratory, 2016), can 

be used to predict PV output (Law et al., 2014). This paper focuses on optimal PV solar 

farm sites in southern Ontario; therefore, GHI will be a primary variable utilized in the 

methodology. However, as DNI is a key ingredient in GHI, it should not be overlooked. 

Mahtta et al. (2014) used DNI and GHI to investigate CST and PV solar potential 

respectively in each state of India. Using annual average GHI and DNI, they were able to 
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locate potential CST and PV power plant sites across India. Similarly, Charabi and Gastli 

(2011) used the spatial distribution of annual solar radiation in Oman for a PV site 

suitability analysis. Janke (2010) also utilized annual direct normal solar radiation data 

from the National Renewable Energy Laboratory (NREL) in their effort to identify areas 

suitable for solar farm development in Colorado, and Suh and Brownson (2016) employ 

solar irradiation modeled from a Digital Elevation Model (DEM) in a suitability index of 

solar farm site suitability for Ulleung Island, South Korea. However, solar irradiance is 

often affected by atmospheric agents. For instance, Law et al. (2014) also discovered that 

since weather can affect DNI, the inclusion of numerical weather patterns and clear sky 

models can increase the accuracy of DNI forecasts, which translates to more efficient CST 

plants. Similarly, Nikitidou et al. (2014) learned that atmospheric aerosols can attenuate 

DNI by up to 45%, resulting in up to 6 kWh/m2 of energy absorbed per day. Some studies 

account for atmospheric aerosols and clear skies by factoring in weather patterns such as 

the number of sunlight hours and the temperatures a certain area receives. For instance, 

Suh and Brownson (2016) utilized sunshine hours and average temperature in summer as 

factor variables in their solar farm suitability analysis of Ulleung Island. Carrión et al. 

(2008) applied average temperature and annual number of sun hours in their PV power 

plant analysis of southern Spain, weighting the latter variable the heaviest. Based on these 

studies, it is evident both solar irradiance and weather are crucial factors that need to be 

accounted for in a solar farm suitability analysis. 

While solar radiation is evidently the most important variable in locating solar farm sites, 

Uyan (2013) makes the essential distinction that the “locations with the highest solar 

resources are not always feasible sites for solar farms”. This idea allows for the introduction 
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of several other key variables in research locating optimal solar power plant sites. Many 

studies implement hydroelectric utility transmission lines as a factor (Janke, 2010; Uyan, 

2013; Suh and Brownson, 2016). These studies favour proximity to transmission lines to 

reduce economic costs of transporting gathered solar energy. Similarly, proximity to major 

roads is frequently used as a favourable variable in the literature. Uyan (2013) attributes 

proximity to major roads to lowering economic construction costs of solar farms, and 

therefore weights areas within a 100 metre buffer from all major roads as ideal. Janke’s 

(2010) findings agree, noting the importance of proximity to roads and the existing power 

grid system, and give these variables a high importance weight. 

Slope is another important factor in much of the literature. Suh and Brownson (2016) and 

Tahri et al. (2015) highlight the importance of slope for minimizing construction and 

preconstruction costs by deploying PV solar farms on flat areas. However, an exact 

maximum or ideal slope is not consistent throughout the literature. Mahtta et al. (2014) 

only considered areas with slopes less than 2.1% in their calculation of solar power 

potential across India. Charabi and Gastli (2011) use a 5% slope threshold for suitable solar 

farm sites in their analysis, while Carrión et al. (2008) regard a slope less than 3% as ideal. 

Tahri (2015) and Effat (2016) incorporate aspect, or azimuth, the compass direction a slope 

faces, in their solar farm site evaluations, claiming south-facing slopes are more suitable 

for solar farm sites in the northern hemisphere as they face the sun. However, Suh and 

Brownson (2016) make the valuable notion that ground-mounted PV systems can be 

installed facing south when installed on flat terrain. Additionally, aspect is accounted for 

when calculating solar radiation (Charabi and Gastli, 2011). Therefore, with flat terrain 
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being an important criteria throughout most of the literature, aspect is typically not used as 

a direct input in the majority of previously conducted studies. 

Land use and land composition are additional factors that come into play as both factor 

variables and constraint variables. Many studies use land use classes as factor variables, 

identifying the most suitable land classes and assigning favourable suitability scores 

accordingly. Uyan (2013) gave favourable values to barren and agricultural land in their 

suitability analysis. Likewise, Janke (2010) classified short vegetation areas such as 

prairies and steppes as ideal locations. 

2.3 Constraint Variables 

Some studies use land composition as a constraint variable, such as classifying residential 

or culturally or ecologically sensitive areas as negative indicators. For example, Suh and 

Brownson (2016) included urban areas, tourist sites, and natural environment conservation 

areas in their unified constraint layer. Similarly, Uyan (2013) created a 500 metre buffer 

around archeological sites, military areas, forest land, wildlife protection areas, 

biologically significant areas, and environmental protection areas, along with including 

wetlands as a constraint site. 

Other constraint variables seen in much of the literature relate to land use. These often 

consist of urban and residential areas, culturally, ecologically, or environmentally 

protected or sensitive areas, roads, flood prone areas, dams, rivers, and other water bodies 

(Charabi and Gastli, 2011; Tahri, 2015; Suh and Brownson, 2016). 

It is important to note that each study varies due to the objectives and data available. For 

instance, Uyan (2013) does not use any solar radiation variables to select solar farm sites 

in Turkey’s Karapinar region while Mahtta et al. (2014) conduct their study exclusively 
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using DNI, GHI, and constraint factors. No single method has been proven better than 

another; therefore, this study will best employ the knowledge gained and techniques 

developed in an effort to accurately delineate the areas of southern Ontario suitable for PV 

solar farms using the data and methods available. 
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CHAPTER 3: METHODS AND DATA 

3.1 Methods 

Most studies utilize a multi-criteria evaluation (MCE), often an analytical hierarchy 

process (AHP), in combination with a GIS in their efforts to identify optimal solar farm 

sites (Carrión et al., 2008; Janke, 2010; Charabi and Gastli, 2011; Uyan, 2013; Sánchez-

Lozano et al., 2014; Vafaeipour et al., 2014; Tahri et al., 2015; Effat, 2016; Singh et al., 

2016; Suh and Brownson, 2016; Sindhu et al., 2017). Some research utilizes other methods. 

For instance, Hammer et al. (2003) used a purely remote sensing based approach via 

HELIOSAT data in their solar energy assessment of Europe. However, this is an anomaly 

among the literature as most studies employ a variety of data, often using remotely sensed 

data alongside land use and other data to evaluate solar farm suitability. 

Carrión et al. (2008) classify MCE methods into three groups: compensatory techniques, 

non-compensatory techniques, and fuzzy techniques. Compensatory techniques are those 

in which an alternative that is favourable in one criterion might be compensated for if it is 

unfavourable in different criteria (Carrión et al., 2008). For example, an area with high 

solar radiation will have its suitability for a solar farm reduced if it has lots of cloud cover 

or is in a very remote area, since one criterion is high but another is low for that area. 

According to Carrión et al. (2008), these techniques require a higher cognitive weight as 

the decision-maker must assign criteria weights in the form of a decision-making rule. In 

this context, cognitive weight refers to the decision-maker's reasoning. This means it is up 

to the analyst's judgement to decide on criteria weights, and therefore they should be 

familiar with the subject matter. Non-compensatory techniques do not require as much 

cognitive weight as they only assign ordinal values to the criteria (Carrión et al., 2008). 
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Fuzzy techniques deal with problems with unclear boundaries, and serve as an alternative 

to binary logic (Carrión et al., 2008). 

AHP falls into the compensatory techniques category, and is one of the most popular 

techniques used. It has the advantages of allowing for qualitative evaluations, uses weight 

assignments, can have a sensitivity analysis carried out on the results, and can deal with 

complex real-world problems with a high degree of flexibility and reliability (Carrión et 

al., 2008). Taking this further, Charabi and Gastli (2011) note how AHP is applied in a GIS 

in one of two ways: first, it can be used to derive importance weights coupled with criterion 

map layers, then aggregating the weights with the criterion layers; the second method is to 

combine the priority levels for all levels of the hierarchical structure, including the level 

representing the alternatives. The first approach allows for a large number of alternatives, 

which make it impossible to a complete pairwise comparisons. In the second approach, a 

relatively small amount of alternatives can be evaluated (Charabi and Gastli, 2011). 

These findings are consistent in the literature, as AHP is a popular method applied in solar 

farm site evaluations (Carrión et al., 2008; Suh and Brownson, 2016). Charabi and Gastli 

(2011) use AHP in combination with order weight averaging, which incorporates both the 

criterion importance and order weight values, using fuzzy quantifiers to develop a solar 

power plant suitability index in a GIS. Similarly, Suh and Brownson (2016) apply the AHP 

technique by weighting factor variables to generate a single PV suitability index, and Uyan 

(2013) create a land suitability map of the logical location of solar farm sites in Konya, 

Turkey by combining AHP with a GIS. 
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3.2 Solar Radiation 

To calculate incoming solar radiation of the study area, the Area Solar Radiation tool in 

the Spatial Analyst extension of ArcGIS was used (ESRI, 2016). This tool derives 

incoming solar radiation from a raster surface for an analyst-determined time frame. The 

output radiation rasters are floating-point type and have units of watt hours per square 

metre (WH/m2). The radiation outputs include both direct and diffuse radiation rasters, as 

well as a global radiation raster. This global radiation raster calculates the total amount of 

incoming solar insolation for each location of the input surface by adding diffuse and direct 

insolation (ESRI, 2016). As GHI is the main solar indicator for PV potential and is 

calculated from both direct irradiance and diffuse irradiance, the global radiation raster 

output was employed in this study. 

A digital surface model (DSM),  retrieved from Canada’s Ministry of Natural Resource’s 

Geogratis Geospatial Data Extraction tool, was used as the input raster for the Area Solar 

Radiation tool (Natural Resources Canada, 2017). This was then reprojected to the 

coordinate system WGS84, to match the land use layer, at a spatial resolution of 200 metres 

to reduce the processing power needed. 

The time frame selected for the Area Solar Radiation tool was January 1, 2016 to December 

31, 2016, the entire 366 day span of the leap year. This is the maximum range of days 

allowable by the tool (ESRI, 2016). The year 2016 was selected for its temporal relevance. 

While a multi-year averaging of global insolation would be ideal, the processing power 

and time needed to calculate several years’ radiation values for all of southern Ontario was 

too demanding for the resources available. This can be considered a limitation of this study. 
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The latitude entered in the Area Solar Radiation tool was 43.92°N. This is the mean latitude 

of the study area, automatically calculated by the tool. This is consistent with the findings 

in Rowlands et al. (2011) which states Toronto is at a latitude of 44°N and Ottawa is at a 

latitude of 45°N. Figure 3.1 displays the resulting global insolation raster. The symbology 

of this raster uses a standard deviation stretch of 2.5 across the colour gradient to emphasis 

the highs and lows of global radiation throughout the study area. 

 
Figure 3.1: Global radiation raster of southern Ontario for 2016 (Data sources: ESRI, 

2016; Natural Resources Canada, 2017)  

3.3 Cloud Cover 

As discussed in the literature review, climate factors can influence an area’s solar potential 

(Chen et al., 2014; Suh and Brownson, 2016). More specifically, the number of sunshine 

hours is often used (Janke, 2010; Suh and Brownson, 2016). While the ArcGIS Area Solar 

Radiation tool provides a direct duration raster output, representing the duration of direct 

incoming solar radiation in units of hours, this result only accounts for direct radiation and 
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only for the year 2016. Since GHI uses diffuse radiation as a factor, and the duration of 

radiation can vary from year to year, these data were not optimal to account for climate 

patterns. 

Therefore, Surface meteorology and Solar Energy data were acquired from the National 

Aeronautics and Space Administration (NASA) Atmospheric Science Data Center (NASA 

Atmospheric Science Data Center, 2017). The data used are the monthly averaged cloud 

amount at 15:00 Greenwich Mean Time (GMT), or 11:00 AM Eastern Standard Time 

(EST), as a percentage over 22 years spanning July 1983 to June 2005 (NASA Atmospheric 

Science Data Center, 2017). These data were selected because they are most analogous 

with number of sunshine hours out of the available datasets, as less cloud cover logically 

translates to more sunshine hours and thus less solar irradiance variability (Inman et al., 

2013). The time utilized was 11:00 AM EST because it is the closest hour to midday 

available, and therefore most accurately portrays an area’s average number of sunshine 

hours in a year (Krauter, 2005). 

The data include each month’s average percent of cloud cover for a set of 60 coordinates 

that cover the study area. As solar farms operate throughout the entire year, these monthly 

values were summed and averaged to produce a 22-year annual average of percent cloud 

cover. 

Since the data were provided as coordinates in a grid pattern, an interpolation was 

performed to create a continuous raster across the study area. This was done using the 

Kriging interpolation method in the geostatistical analyst extension of ArcGIS. This 

method was selected because it provides statistical results that can be interpreted and 

improved upon through further iterations. The results of the interpolation display an 
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accurate interpolation, yielding a mean prediction error of 0.017 and a standardized root-

mean-square error of 0.960 when employing an exponential method. These were the most 

optimal error values between exponential, spherical, and Gaussian kriging methods that 

were employed. Figure 3.2 displays the interpolation results clipped to the study area. 

 
Figure 3.2: Cloud cover raster using filled contour classes generated from kriging 

interpolation (Data source: NASA Atmospheric Science Data Center, 2017) 

 

These results suggest the southwest portion of the study area has the least amount of 

average annual cloud cover, and therefore the most amount of sunshine hours. 

3.4 Slope 

Slope was derived from the digital elevation model acquired from Geogratis (Natural 

Resources Canada, 2017). The study area has a maximum slope of 35.46 percent and the 

average slope of 2.02 percent. Based on the literature, an ideal slope is less than 3-5% 

graded (Carrión et al., 2008; Charabi & Gastli, 2011; Uyan, 2013; Tahri et al., 2015). This 

low mean slope indicates the study area is mostly suitable for solar farms in regards to the 
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terrain being flat. However, slope is an important factor, as it is used in nearly every prior 

solar farm suitability analysis (Carrión et al., 2008; Charabi & Gastli, 2011; Uyan, 2013; 

Chen et al., 2014; Mahtta et al., 2014; Sánchez-Lozano et al., 2014; Brewer et al., 2015; 

Tahri et al., 2015; Suh & Brownson, 2016), and therefore will remain a crucial factor in 

the analysis. Figure 3.3 displays the slope raster used for the analysis. 

 
Figure 3.3: Slope raster of study area derived from Geogratis 2016 digital elevation model 

using a natural break (Jenks) classification (Data source: Natural Resources Canada, 2017) 

3.5 Land Use, Roads, and Hydro Lines 

3.5.1 Land Use 

A land use layer was gathered from Agriculture and Agri-Food Canada (2010). These 2010 

land use classification data separate land into 15 different classes, listed in Table 3.1 along 

with their descriptions from Agriculture and Agri-Food Canada. Each class can be 

categorized as either a factor variable or a constraint variable. Therefore, Table 3.1 notes 
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how each class is applied in the analysis. Figure 3.4 shows the land use raster of the study 

area. 

 

Table 3.1: Land use classes 

Class Description Application 

Unclassified Areas not classified due to clouds Given No Data value 

Settlement Built-up and urban Constraint variable 

Roads Primary, secondary and tertiary Constraint variable* 

Water Natural and human-made Constraint variable 

Forest Treed areas >1 ha in size Factor variable 

Forest Wetland Wetland with forest cover Constraint variable 

Trees Treed areas <1 ha in size Factor variable 

Treed Wetland  Wetland with tree cover Constraint variable 

Cropland Annual and perennial Factor variable 

Grassland 

Managed 

Natural grass and shrubs used for cattle 

grazing 

Not present in study area  

Grassland 

Unmanaged 

Natural grass and shrubs with no 

apparent use (forest openings, alpine 

meadows, tundra, etc.) 

Factor variable 

Wetland Undifferentiated wetland Constraint variable 

Wetland Shrub Wetland with shrub cover Constraint variable 

Wetland Herb Wetland with grass cover Constraint variable 

Other land Rock, beaches, ice, barren land Constraint variable 

*More accurate road data were acquired from a different source to be used as a factor variable 
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Figure 3.4: Land use class raster (Data source: Agriculture and Agri-Food Canada, 2010) 

3.5.2 Roads 

The road class of the land use layer includes secondary and tertiary roads. The locations of 

these smaller roads are not exact, as the land use class raster was generated through remote 

sensing techniques. As such, the secondary and tertiary road locations are not as accurate 

as other available road data. Therefore, a road segment feature from Geogratis was used as 

a factor variable for this analysis, while the road class in the land use layer is used as a 

constraint variable since solar farms cannot be constructed on existing roads. As the 

Geogratis road layer also contains local roads, arterial roads, alleyways, and other 

superfluous data, the layer was queried to only include expressways, freeways, rapid transit 

routes, and service lanes. This simplifies the factor variable road layer, and gives it more 

importance as major roads better facilitate the transport of needed materials and labour than 

secondary and tertiary roads. Furthermore, this is more in line with the literature, and past 

studies generally focus more on major roads than smaller, local ones (Charabi and Gastli, 
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2011; Uyan, 2013; Effat, 2016). This factor variable road layer was then converted to a 

raster with a 200 metre cell size to match the spatial resolution of the rest of the data. The 

roads raster was then buffered into five classes, which can be seen in Figure 3.5. 

 
Figure 3.5: Buffered raster of major road proximity (Data source: Natural Resources 

Canada, 2017) 

 

3.5.3 Hydro Lines 

The hydro lines layer was acquired from the Land Information Ontario utility lines dataset, 

created in 1977 and updated in 2008 (Land Information Ontario, 2012). This layer includes 

some unneeded data, such as communication, natural gas, and water lines. Therefore, hydro 

lines and submerged hydro lines were queried out of this layer, then converted to a raster 

with a 200 metre cell size to match the spatial resolution of the rest of the data. As 

mentioned, proximity to hydro lines can reduce the construction and maintenance costs of 

solar farms, and thus will be favourably scored in the AHP. The hydro lines raster was 

buffered into four classes, which is displayed in Figure 3.6. 
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Figure 3.6: Buffered raster of hydro line proximity (Data source: Land Information 

Ontario, 2012) 

 

  



23 

 

CHAPTER 4: ANALYSIS 

4.1 Analytical Hierarchy Process Model 

In this study, an AHP MCE method is employed. Figure 4.1 displays the AHP model 

utilized, which is partially based on Uyan (2013). 

 
Figure 4.1: Analytical hierarchy process model 

As there are not many alternatives to evaluate (areas will fall somewhere between 

“suitable” and “unsuitable”), priority levels from all levels on the hierarchical structure are 

combined to reach a suitability map. In this AHP model, factor variables and constraint 
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variables were identified through the literature review, and collected through various open 

data sources and GIS processes. 

In order to prepare the factor variables for the overweight analysis, variable suitability 

scores were assigned based on both analyst judgement and previously conducted studies. 

Then, the variables were weighted using a pairwise comparison analysis supported by a 

consistency ratio analysis. This is done to compare each variable to every other variable in 

order to assign priority weights. The consistency ratio analysis ensures the variable value 

assignment was done fairly during pairwise comparison. These analyses are further 

explained in sections 4.2.2 and 4.2.3, respectively. 

4.2 Factor Variable Scoring and Weighting 

4.2.1 Factor Variable Reclassification and Aggregation 

Each variable was reclassified into integer scores ranging from 1 to 9 based on the 

corresponding indicators’ suitability for solar farm sites. Smaller integers imply more 

favourable scores, and thus more suitable values during the overlay analysis. These scores 

are seen in Table 4.1. 
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Table 4.1: Integer score suitability scale  

Integer score Suitability 

0 Restricted (constraint area) 

1 Extremely Suitable 

2 Highly Suitable 

3 Mostly Suitable 

4 Somewhat Suitable 

5 Somewhat Unsuitable 

6 Mostly Unsuitable 

7 Highly Unsuitable 

8 Extremely Unsuitable 

9 Most Unsuitable 

 

In this step, the variables are also aggregated to simplify the process of calculating variable 

weights and to relate the method to previously conducted research. Table 4.2 displays the 

factor variables. 
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Table 4.2: Factor variable reclassification and aggregation 

Variable Sub-variable Integer score Indicators 

Climate Global irradiance (WH/m2) 
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4.2.2 Factor Variable Pairwise Comparison 

Calculating criteria weights in an AHP involves utilizing a pairwise comparison matrix of 

all the factor variables. This matrix is typically based on a fundamental AHP evaluation 

scale developed by Saaty (1997). In this scale, each variable is assigned a value that 

represents its importance against another value. For example, a variable only slightly more 
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important than another will be assigned a value close to 1, whereas a variable much more 

important than another will receive a value closer to 9. Inverse values (e.g., 1/9) are used 

when a variable is less important than another. This scale is displayed in Table 4.3, taken 

from Suh and Brownson (2016). 

Table 4.3: AHP pairwise evaluation scale (source: Suh and Brownson, 2016) 

Intensity of 

Importance 
Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

3 Moderate importance Experience and judgment slightly favor one activity over 

another 

5 Strong importance Experience and judgment strongly favor one activity over 

another 

7 Very strong or 

demonstrated importance 

An activity is favored very strongly over another;  

its dominance demonstrated in practice 

9 Extreme importance The evidence favoring one activity over another is of the 

highest possible order of affirmation 

2, 4, 6, 8 For compromise between 

the above values 

Sometimes one needs to interpolate a compromise judgment 

numerically because there is no good word to describe it 

 

Based on the comparison matrices of Carrión et al. (2008) and Tahri et al. (2015), Table 

4.4 shows the pairwise comparison matrix used in this study. The values entered in this 

matrix were chosen using the analyst's informed opinion of the study area in combination 

with the aforementioned research. The values remain consistent with the literature aside 

from small variations. 
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Table 4.4: Pairwise comparison matrix 

Criteria Climate (C1) Land Use (C2) Location (C3) Orography (C4) 

Climate (C1) 1.00 5.00 7.00 3.00 

Land Use (C2) 0.20 1.00 3.00 0.33 

Location (C3) 0.14 0.33 1.00 0.20 

Orography (C4) 0.33 3.00 5.00 1.00 

Sum 1.67 9.33 16.00 4.53 

 

The next step of AHP pairwise comparison is to normalize the matrix. This is performed 

by dividing each cell value by the sum of its column. The normalized values of each row 

are then averaged to produce the priority vector. These priority vectors indicate the final 

weights of the variables (Carrión et al., 2008). Table 4.5 displays the normalized matrix. 

Table 4.5: Normalized priority matrix 

Criteria Climate 

(C1) 

Land Use 

(C2) 

Location 

(C3) 

Orography 

(C4) 

Total Average  

(Priority Vector) 

Climate (C1) 0.60 0.54 0.44 0.66 2.23 0.56 

Land Use (C2) 0.12 0.11 0.19 0.07 0.49 0.12 

Location (C3) 0.09 0.04 0.06 0.04 0.23 0.06 

Orography (C4) 0.20 0.32 0.31 0.22 1.05 0.26 

 

4.2.3 Consistency Ratio 

The final step of AHP pairwise comparison is to calculate a consistency ratio (CR). This is 

done to identify the degree of consistency in assigning values to the variables in the 

pairwise comparison matrix (Suh and Brownson, 2016). The formula to reach the 

consistency ratio is: 

 CR = CI / RI        (1) 
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where CI is the consistency index and RI is the random consistency index (Uyan, 2013). 

The consistency index is obtained using the formula 

CI = λmax - n / n – 1       (2) 

where λmax is the eigenvalue of the pairwise comparison matrix and n is the number of 

variables (Uyan, 2013). The random consistency index is uniform throughout the literature, 

and is based on the number of variables in the comparison matrix (Carrión et al., 2008; 

Uyan, 2013; Suh and Brownson, 2016; Sindhu et al., 2017). This is shown in Table 4.6. 

Thus RI is equal to 0.90 when n is 4. 

Table 4.6: Random consistency index 

n 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

Given this, the consistency ratio was calculated to be 0.042. This is considered acceptable, 

as CR values under 0.10 are considered satisfactory while factor values should be revised 

in situations where the CR values are greater than 0.10 (Carrión et al., 2008). 

With the priority vectors acquired and the consistency ratio confirmed to be adequate, the 

factor variable weights were calculated to be 56% for Climate, 26% for Orography, 12% 

for Land Use, and 6% for Location. These weights were evenly distributed to the sub-

variables. This is displayed in Table 4.7. 
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Table 4.7: Factor variable weights and scores 

Variable Sub-variable Weight (%) Integer score Indicators 

Climate Global irradiance (WH/m2) 
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4.3 Overlay Analysis 

The next step performed in the analysis was a weighted overlay. This tool overlays several 

rasters using a common measurement scale, in this case the assigned integer scores 1 to 9, 

and weighs each raster according to its importance (ESRI, 2016). With the weights and 

integer scores established (Table 4.7), this process utilized the weighted overlay function 
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in ArcGIS. In preparation for this tool, each raster representing the factor variables was 

reclassified to match the integer score values according the corresponding indicators, as 

displayed in Table 4.7. Then, each raster was brought into the weighted overlay tool and 

assigned the appropriate weight. 

To account for the constraint variables, the corresponding rasters containing the constraints 

were added to the weighted overlay. These were given a weight of 0% but were set to 

“Restricted” for the integer score in the scale value dialog of the ArcGIS tool. This allowed 

the constraint variables to restrict the tool from assigning any suitability values to areas 

that solar farms cannot be feasibly built on, while not having an influence on non-constraint 

areas due to having no weight percentage. Table 4.8 displays the constraint variables 

incorporated into the weighted overlay. 

Table 4.8: Constraint variables 

Variable Sub-variable Weight (%) Integer score Indicators 

Constraints Land Use Classes 

 

 

 

 

 

 

 

 

 

Cultural and aboriginal lands 

0 

 

 

 

 

 

 

 

 

 

0 

Restricted 

 

 

 

 

 

 

 

 

 

Restricted 

Settlement 

Roads 

Water 

Forest Wetland 

Treed Wetland 

Wetland 

Wetland Shrub 

Wetland Herb 

Other land 

 

Aboriginal land 

Ritual cultural area 

 

  



32 

 

CHAPTER 5: RESULTS 

5.1 Suitability Map 

The resulting site suitability map is shown in Figure 5.1. As seen, the southwestern portion 

of the study area appears to be the most favourable for hosting solar farms, while the 

northern parts appear less optimal. This is consistent with the data, as the southwestern part 

of southern Ontario has mostly flat terrain, a large concentration of highways, hydro lines, 

and agricultural land, and receives a relatively large amount of GHI. Likewise, the low 

amount of cloud cover of the southwest seen in Figure 3.2 clearly corresponds to favourable 

suitability results for the same area. 

The eastern part of the study area also displays favourable lands for solar farm sites. While 

not receiving as much solar radiation as north-central and west-central parts of southern 

Ontario (see Figure 3.1), eastern Ontario has lots of agricultural land (see Figure 3.4) in 

close proximity to major roads (see Figure 3.5) and hydro lines (see Figure 3.6). 

Conversely, the north and northwest portions of the study area yield more shades of red, 

indicating less favourable sites overall. This is likely due to the relatively high amount of 

cloud coverage received in areas surrounding Georgian Bay (see Figure 3.2) in 

combination with much of the land being composed of treed and forested areas (see Figure 

3.4). 
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Figure 5.1: Site suitability map 

5.2 Statistical Analysis 

The statistical distribution of land suitability is shown in Table 5.1. A negligible amount 

of land was classified as “extremely suitable” (1), while no area was classified as “most 

unsuitable” (9). This is logical due to the unlikeliness of a certain area receiving either all 

(1) integer scores or all (9) integer scores for every factor variable while not falling in a 

constraint area. “Somewhat suitable” (4) had the largest land assignment, at 29.63% of the 

study area. Again, this is not surprising as it is a central integer in the suitability scale. 

Additionally, this is logical as generally even the most optimal or non-optimal areas in 

regards to some criteria will be compensated for by other criteria as is typical in an AHP 

(Carrión et al., 2008). 
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The constraint variables accounted for 22.35% of the total study area, and are shown as 

“restricted” (0) areas. Much of the constraint areas are comprised of lakes, rivers, and other 

water bodies. 

Table 5.1: Land suitability class distribution 

Suitability (score) Area (km2) Percent of Study Area 

Restricted (0) 57,692,751.10 22.35% 

Extremely Suitable (1) 325.41 0.00% 

Very Suitable (2) 24,832,555.34 9.62% 

Mostly Suitable (3) 57,464,400.60 22.27% 

Somewhat Suitable (4) 7,6473,006.16 29.63% 

Somewhat Unsuitable (5) 33,455,581.14 12.96% 

Mostly Unsuitable (6) 6,259,760.87 2.43% 

Very Unsuitable (7) 1,746,026.94 0.68% 

Extremely Unsuitable (8) 154,744.28 0.06% 

Most Unsuitable (9) 0.00 0.00% 

Total 258,079,151.83 100.00% 

 

Figure 5.2 provides a graphical representation of the land suitability class distribution, 

omitting constraint areas, across the study area. When discounting constraint areas, 95.93% 

of the study area is classified as either “very suitable” (2), “mostly suitable” (3), “somewhat 

suitable” (4), or “somewhat unsuitable” (5). 
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Figure 5.2: Distribution of land suitability classes in non-constraint areas 

Looking more in-depth at the distribution of land suitability classes, Figure 5.3 displays 

suitability classes 2 through 5 subdivided from the rest to better depict where each 

suitability class falls in the study area. Looking at the segmented classes, it is evident the 

“very suitable” areas reside almost exclusively in the southwest and west-central portions 

of the study area. Likewise, the “mostly suitable” areas are typically surrounding the “very 

suitable” areas in the western parts. This is further indication that these areas should be 

utilized to develop solar farms on the most, while more north generally translates to less 

suitable. 
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Figure 5.3: Suitability classes (a) “very suitable”, (b) “mostly suitable”, (c) “somewhat 

suitable”, and (d) “somewhat unsuitable” 

5.3 Comparative Analysis 

To address the third objective of this study, a list of renewable energy projects was acquired 

from the Ontario Government open data catalogue (Ontario, 2017). This dataset includes 

project site information of the 119 solar farms in Ontario, including the municipality each 

farm resides in. Of these sites, 104 (87%) of Ontario’s industrial solar farms fall within the 

study area. Since the data do not provide exact addresses of the solar farm sites, a dot 

density map showing the number of solar farms per municipality was created and is 

displayed in Figure 5.4. 
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Figure 5.4: Approximate locations of existing solar farms (Data source: Ontario, 2017) 

As seen, solar farm sites are loosely concentrated in the southwestern, central, and eastern 

municipalities of the study area. Conversely, northern municipalities do not yield many 

solar farms. This is logical as these northern areas are more rural, and thus less likely to 

see development of any kind. 

Taking this comparative analysis a step further, the approximate solar farm site locations 

were overlaid atop the site suitability map in order to directly compare approximate 

existing solar farm site locations to the suitability classes produced through the AHP 

model. This is displayed in Figure 5.5. 
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Figure 5.5: Approximate locations of existing solar farms overlaid on suitability map 

 

This figure suggests much of the west-central portion of the study area (shown in the red 

box), remains untapped despite yielding one of the largest “very suitable” (2) areas. This 

may be due to the fertility of the agricultural land, the surficial geology of the land, or the 

price of the land in that area. 

Another potential explanation to “very suitable” land being unused for solar farm 

development is that social or political influences may have an effect on certain areas. 

Demographic opinions on solar farms are difficult data to objectify and analyze, and thus 

less seen in solar farm site suitability analyses. Regardless, social pushback on industrial 

scale solar power plants can hinder development, while political commitment from the 

government is crucial for renewable energy projects (Sindhu et al., 2017). 

Lastly, it is possible solar companies are unaware of the locational suitability of southern 

Ontario. As mentioned, little research has been conducted on Ontario’s solar industry, and 

no previous study has done a location-based suitability analysis for PV solar farms in this 
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study area. Therefore, solar power plant developers may not be aware of where the highest 

suitability areas in southern Ontario are. 
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CHAPTER 6: CONCLUSIONS AND LIMITATIONS 

6.1 Discussion 

The results of the analysis show much of southern Ontario is at least somewhat suitable for 

hosting industrial-scale solar farms. However, these results are based on imperfect data that 

span different time frames. An MCE can help alleviate these imperfections by 

incorporating a plethora of varying data to dilute errors and temporal inconsistencies 

among the data. In particular, an AHP model effectively uses a compensatory technique to 

better spread the weight of certain criteria and thus decrease the influence any error that 

may reside in the different variables. 

Regardless, southern Ontario boasts large amounts of flat agricultural land away from 

settlement areas that are conducive to PV solar power plants. In addition, much of the study 

area falls in close proximity to well-connected grids of hydro lines and highways in order 

to help decrease economic development and maintenance of potential and existing solar 

farms. 

This study has shown that a MCE using AHP can delineate the optimal and suboptimal 

locations for solar farms in southern Ontario with general success. These types of studies 

are replicable using different data and methods, and thus act as foundational frameworks 

to build upon, and this major research paper has done using previously conducted research. 

Looking forward, more definite and verified data would serve future studies investigating 

Ontario renewable energy landscape well. 

6.2 Conclusions 

The results of this study are threefold, and correlate directly with the objectives initially 

outlined. Firstly, it was determined through the literature review that multi-criteria 
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evaluations using a GIS to identify optimal solar farm locations in large areas most often 

use an AHP method with economic, environmental, and technical variables. More 

specifically, these variables are typically some combination of solar radiation, land use or 

land structure, topography, and climate inputs, along with constraint measures to restrict 

certain areas. The results of this study verified that using GHI, cloud cover, road and hydro 

line proximities, slope, and land use factor variables along with land use and cultural 

constraint variables in an AHP model can adequately classify a large study area’s solar 

farm site suitability. 

Secondly, this study has shown that roughly 61.52% of southern Ontario falls in the range 

of “very suitable” to “somewhat suitable”. It should be understood that these results are 

based on a 200 metre spatial resolution and use data derived from varying sources, and are 

therefore not absolute, but rather an approximation. Regardless, these results are a 

promising metric for the future of Ontario’s solar industry, and can increase the confidence 

in renewable energy investment in the province. 

Thirdly, the results of this study show that many of southern Ontario’s existing solar farms 

fall into an area at least somewhat suitable for PV solar plants. However, as shown in Figure 

5.5, a large “very suitable” portion of the central southwestern part of the study area is 

seemingly untapped. Based on the analysis, this area serves to gain a great deal from solar 

farm development. 

6.3 Limitations 

As mentioned, the data used in this study are derived from several different sources, and 

vary in spatial and temporal resolution as well as levels of accuracy. As this study was 

conducted using strictly open source data, the analysis was conducted as effectively as 
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possible with those data. Further studies may benefit from more verified and uniform data, 

and will likely become more profound as data becomes more available, abundant, and 

accurate. 

Likewise, the processing tools available for this study only allowed for a single year’s 

calculation of the study area’s incoming solar radiation values. In an ideal situation, a 

multiple year average of incoming GHI would be used and would share the same temporal 

span as any other utilized data with a temporal attribute. 

The dot density map seen in Figure 5.4 uses the count of solar farms in each municipality 

to show approximate locations of existing solar farms. These locations are randomly placed 

throughout the municipalities hosting the solar farms, and are therefore approximations 

lacking accuracy. Figure 5.4 and Figure 5.5, and in turn the comparative analysis, would 

perhaps benefit from more specific locations of the existing solar farms. Exact addresses 

could allow for a more in-depth comparative analysis, potentially providing more insight 

into the discrepancies between existing sites and optimal areas. Therefore, this can be 

considered a limitation of this study. 

Finally, this study employs a 200 metre spatial resolution. While this provides an adequate 

depiction for large-scale suitability, future studies would benefit from higher resolution 

data in order to provide more detailed and site-specific results. 
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