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ABSTRACT 

 

Urban change is an important urban planning and environmental issue. Previous urban 

change detection studies in the Greater Toronto Area (GTA) usually involved limited 

dates and/or study areas. Landsat imagery from 1972 to 2004 were used in this research 

that cover the majority of the contiguous urban area in the GTA. A series of urban change 

detection experiments were performed that compared methodologies and techniques. The 

results greatly improved classification accuracy, particularly for Landsat Multispectral 

Scanner (MSS) data. A yearly average of 14.1 km2 of new development was observed, 

which corresponds well with results from previous studies in this area. The patterns and 

rates of urban change varied among municipalities inside the GTA. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Urbanization refers to a process in which an increasing proportion of an entire population 

lives in cities and the suburbs of cities, by which rural areas become transformed into 

urban areas (Eldridge, 1956). In 1950, 30 percent of the world population lived in urban 

areas, by 2000 the proportion of urban dwellers had risen to 47 per cent, and by 2030 it is 

expected to reach 60 per cent. In the meanwhile, the number of mega-cities, which is 

defined by a city size of more than 10 million population, increased from 1 (New York) in 

1950, to 5 (Tokyo, New York, Shanghai, Mexico City and São Paulo) in 1972, and to 19 

in 2000. In 2015 current projections put this number at 23 (United Nations, 2000).  

 

The process of urbanization brings about a significant and long-term change in 

population, social, economic, ecological, environmental, and political structures. For 

instance, people originally depending on agriculture move to urban areas where people 

no longer depend on natural based occupations. The city needs new land for additional 

settlements and work places for the newly emerging population. However, this causes 

conflicts with agriculture, ecology, environment, and energy (University of Michigan, 

2005). Therefore, to monitor with up-to-date information about urban change becomes an 

important issue for both government and private sectors (Sheppard, 1964).  

 

Geographically, urban change refers a difference in which rural areas are converted urban 

areas from one time to another. Change detection is the process of identifying differences 

in the state of an object, a surface, or a process by observing it at different times (Singh, 
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1989). Current urban change detection mainly relies on traditional land information 

investigation combined with aerial photography interpretation. However, such 

interpretation is slow, tiring to interpreters, and subject to considerable errors of omission. 

Moreover, the availability of aerial photographs for a specific area and time depends on 

the flight conditions, which are not always favourable (Sheppard, 1964; Jackson, et al, 

1980; Lillesand, et al, 2005). 

 

Since the launch of Landsat 1, originally named ERTS-1, in 1972, Landsat satellite 

imagery has become an important data set in identifying the change on the surface of 

Earth (Jensen, 1986). The spatial resolution of four broad Landsat Multi-spectral Scanner 

(MSS) bands – (79x79 metres) is relatively coarse and is not sufficient to differentiate 

signatures between agriculture and residential land use (Jensen, 1981). Since the launch 

of Landsat 4 in 1982, and Landsat 7 in 1999 (with improved spatial and spectral 

resolutions), Landsat satellite imagery has been widely applied in urban change detection 

(Jensen, 1986; Forsythe, 2004).  

 

1.2 Problem definition 

Canada is the second largest country by area in the world. It has a 79.3% urbanized 

population, i.e., 23.9 million out of 30 million total population. Four major urban regions 

account for a large and growing proportion of the nation's population. They are Ontario's 

extended Golden Horseshoe, Montréal and adjacent regions, British Columbia's Lower 

Mainland and southern Vancouver Island, and the Calgary-Edmonton corridor (Bennett, 

2005). 

 

The Greater Toronto Area (GTA) (Figure 1.1), the major part of Ontario’s extended 
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Golden Horseshoe, is experiencing rapid urban expansion.  

 

 

Figure 1.1 GTA in Ontario’s extended Golden Horseshoe 

 

From 1991 to 2001 the population increased 20%, to 5.1 million people (44.5% of the 

total Ontario population, and 16.9% of the total Canadian population) (Statistics Canada, 

2001). It is North America’s fifth largest and second-fastest growing urban area region 

(The Office for the Greater Toronto Area, Ministry of Municipal Affairs and Housing, 
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Ontario, 2001). The latest estimates show that Toronto will continue to be Canada's 

biggest urban-population magnet, growing by as many as 100000 people a year and more 

than two million people will be added to the Greater Toronto Area in the next 30 years 

(Immen, 2001). Rapid urbanization has led to the consumption of agricultural land, urban 

sprawl and pollution issues. Twice as much land in the Toronto area could be developed 

in the next 20 years as was covered during the past two centuries (Immen, 2001). 

Increased population, traffic, and infrastructure needs burden the urban environment and 

seriously affect the overall quality of life. Thus, monitoring urban change in terms of the 

amount and spatial pattern in the GTA area is significant for urban planning, land-use 

planning, and the sustainable management of land resources. 

 

1.3 Study area 

The GTA consists of five upper level regions - Peel, Durham, Halton, Toronto, and York 

with a total area of over 7000 square kilometres (The Greater Toronto Marketing Alliance, 

2003). The study area starts from Halton in the west to Durham in the east, Lake Ontario 

in the south to York in the north. Figure 1.2 shows the extent of study area in the GTA. It 

corresponds to the majority of urban areas, particularly the contiguous urban areas in the 

GTA. The municipalities are Toronto, Burlington, Oakville, Mississauga, Brampton, 

Vaughan, Richmond Hill, Markham, Pickering, and Ajax (Figure 1.3).  
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Figure1.2 Study area represented by image in the GTA  
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Figure 1.3 Municipal boundaries in study area 

 

1.4 Data 

1.4.1 Data Availability 

The data are grouped into two categories: primary data and ancillary data. Primary data 

include 10 different years of Landsat MSS, Thematic Mapper (TM), and Enhanced 
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Thematic Mapper plus (ETM+) data from 1972 to 2004.  The ancillary data consist of 

census data from Statistics Canada and supporting data for validation from other data 

sources. Table 1.1 shows the data characteristics.  

 

Table 1.1 Data availability 

Landsat Data Census Data Other Supporting Data 

MSS – 1972 (1972-08-21), 1974 

(1974-07-06), 1977 (1777-06-11)  

TM – 1985 (1985-09-20), 1987 

(1987-05-05), 1990 (1990-09-02), 

1994 (1994-07-11), 2001 

(2001-08-15) 

ETM+ - 1999 (1999-09-03) 

Registered and mosaiced 

(K. W. Forsythe, Ryerson 

University) 

 

TM – 2004 (2004-07-05) 

(NEPTIS) 

1971, 1976, 1981, 

1986, 1991, 1996, 

2001, 2004 

Aerial Photography1995, 

1999, 2002 (Map Library, 

University of Toronto) 

 

 

Canada Land Use 

Monitoring Program 

(CLUMP) 1971, 1976, 1986 

(Natural Resources Canada) 

 

 

 

1.4.2 Coverage of Data in Study Area 

Some years of the data do not fully cover the study area. Some images are missing data in 

the northeast corner, which affects the north part of Ajax, and the northeast corner of 

Markham. The study area is fully covered by data from years – 1972, 1974, 1977, 1985, 

and 2004. The missing data in the northeast corner include years from 1987 to 2001, i.e., 

1987, 1990, 1994, 1999, and 2001. Figures 1.4 to 1.8 show the coverage for these years. 
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Figure 1.4 1987 data coverage 
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Figure 1.5 1990 data coverage 
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Figure 1.6 1994 data coverage 
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Figure 1.7 1999 data coverage 
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Figure 1.8 2001 data coverage 
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1.5 Research objectives 

As mentioned in section 1.2, the GTA is the biggest population magnet in Canada and 

experiencing the most dynamic growth. Therefore, time-series urban change detection in 

the GTA is significant for government agencies and industrial firms in such fields as 

urban development, highway planning, land use, new construction, and agricultural 

studies (Sheppard, 1964). Urban change detection research in this area has been 

successfully conducted by Forsythe (2002 and 2004) and Zhao (2004). However, this 

study examines urban change detection in the GTA from 1972 to 2004 with a greater 

number of images and a smaller image acquisition interval.  

 

1.5.1 Objectives 

The objectives include:  

 Explore efficient methods to quantify the urban growth over large 

agglomeration areas with remote sensing and GIS technologies; 

 Explore urban change detection methods involving multi-date and 

different qualities of data; 

 Assess accuracy of land cover classification and detected urban changes 

with ground truth referenced data; 

 Calculate the amount of detected urban change and delineate the spatial 

patterns of urban change at the upper regional level and the lower 

municipal level; 

 Analyze relationship between urban change and population over the GTA; 

 Recommend the potential extension in further study. 
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1.6 Structure of final research paper 

Chapter 1: Introduction – Introduces the background, problems, available data, and 

research objectives. 

 

Chapter 2: Literature Review – Reviews previous methodologies in urban change 

detection with remote sensing and GIS.  

 

Chapter 3: Methodology – Explores methodologies that are most appropriate to the 

research objectives and applied data.  

 

Chapter 4: Results and Discussion – Shows all dates of satellite-derived results, including 

urban extent maps, urban change maps, area statistics, and accuracy assessments. Based 

on derived results, spatial analysis of urban change and its association with census 

population data are also analyzed.  

 

Chapter 5: Conclusion – Summarizes the values of the methods and results in terms of 

accuracy achieved. Findings of the detected urban change, limitations of this research, 

and recommendations for further study are also given.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Changes occurring on the Earth’s surface are uneven in time and space. Some features are 

fairly static while others are dynamic, changing rapidly (Jensen, 2004). 

Land-use/land-cover change is deemed as a major component of global change with an 

impact perhaps greater than that of climate change (Skole, 1994; Foody, 2001). Keeping 

information up-to-date is crucial not only to more fully understand the physical and 

human processes at work, but also for government agencies, environmental groups, and 

industrial firms to monitor and regulate such changes (Sheppard, 1964; Anderson, 1977; 

Howarth and Boasson, 1983; Jensen, 1986; Pilon et al., 1988; Lunetta and Elvidge, 2000; 

Zhan et al., 2002). Without up-to-date information, effective urban planning is hardly 

possible (Zhang, 2001).  

 

The underlying assumption for change detection using remotely sensed data is that there 

will be a difference in the spectral response of a pixel on two dates if the land cover 

changes from one type to another (Jensen, 1986; Singh, 1989). Ideally, data used for 

change detection should have constant spatial, spectral, and radiometric resolutions under 

constant environmental conditions - atmospheric conditions, soil moisture, phonological 

cycle, and so on when they are acquired from remote sensing systems (Jensen, 2004). 

However, it is difficult to have such ideal situations because those conditions vary. 

Therefore, a thoughtful understanding of the nature of remotely sensed data and 

environmental characteristics is essential. Failure to understand the impact from the 

various data and environmental conditions on the change detection applications can lead 
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to inaccurate results (Dobson et al., 1995; Yuan and Elvidge, 1998).  

 

The following sections review urban change detection techniques from previous research. 

Ground truth validation and the integration of GIS are also introduced. 

 

2.2 Change Detection Techniques 

There have been many new urban change detection techniques developed during the past 

two decades. The techniques have focused on: (1) changes that occurred; (2) the nature of 

the change; (3) the amount of the change; and (4) the spatial patterns of the change 

(Macleod and Congalton, 1998).  

 

More often the techniques of change detection are grouped into one of two categories: the 

postclassification comparison method and the enhancement methods (Nelson, 1983; Pilon 

et al., 1988; Singh, 1989; Yuan and Elvidge, 1998). The techniques below are based on 

these categories. 

 

2.2.1 Postclassification Comparison 

In postclassification change detection, two images from different dates are independently 

classified. The areas of change are then extracted through direct subtraction of the 

classification results (Wickware and Howarth, 1981; Jensen, 1986). This method creates a 

new classification with “from” and “to” identifiers, thus directly capturing the nature and 

direction of change (Macleod and Congalton, 1998; Dai and Khorram, 1999). The 

disadvantages of this method include greater computational and labelling work, severe 
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difficulty in obtaining individual classification accuracy, and difficulty to keep consistent 

between independent classifications (Stow et al. 1980; Howarth and Boasson, 1983; 

Jensen, 1981; Yuan and Elvidge, 1998; Mas, 1999).  

2.2.2 Enhancement Methods 

Image Differencing:  

Image differencing involves subtracting the imagery of one date from that of another. The 

subtraction results in positive and negative values in areas of radiance change and zero 

values in areas of no change (Jensen, 1983, and 1986). In this method, pixels of no 

radiance change are distributed around the mean, while pixels of radiance change are 

located at both tails of the histograms of these transformed data (Singh, 1986). To acquire 

quantitative information about the areas of land-cover change, thresholding is applied to 

the transformed data to separate the pixels of change from those of no-change (Fung and 

LeDrew, 1988). The threshold levels can be determined as a standard deviation from the 

mean or chosen interactively with various thresholds until optimal ones are identified 

(Jensen, 1986). The selection of an optimal threshold should also be based on the 

accuracy of classifying the pixels as change or non-change (Nelson, 1983; Singh, 1986; 

Fung and LeDrew, 1988). In this method, Jensen and Toll (1982) reported the accuracy of 

detecting residential land-use development at the urban fringe was improved from 77% to 

81% when Band 5 (MSS) spectral image differencing was used in conjunction with 

texture differencing based on the use of grey tone spatial dependency matrices. Ridd and 

Liu (1998) found that Band 2 (TM) in image differencing was superior for most of urban 

change applications.  
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Image Ratioing:  

The image ratioing method is useful when changes in viewing conditions degrade the 

ability of a classifier to identify materials correctly because the ratioing algorithm can 

reduce the effect of environment and system multiplicative factors present (Jensen, 1981; 

Jensen, 1986). The area of non-change will yield a ratio value 1.0 while areas of change 

in multiple date imagery will have values either higher or lower than 1.0. As with the 

image differencing method, the changes are also located at both tails of the histogram. 

The selection of thresholds is based on empirical judgment (Friedman, 1978). Howarth 

and Boasson (1983) applied image ratioing and found that Band 5 data were sensitive to 

cultural change. However, compared with other methods such as image overlay, it only 

emphasized major changes. 

 

Principal Component Analysis (PCA): 

Principal Component Analysis (PCA) defines a new set of variables, which are 

uncorrelated or mutually orthogonal (Toll et al., 1980). One major use of PCA is to 

reduce the number of variables that are needed for analysis (Jensen, 1986). The reduction 

in dimensionality is often desired when large volumes of data and computational tasks are 

involved (Chavez and Kwarteng, 1989). Research also shows that different principal 

components account for different information related to specific land cover features. 

Higher-order principal components (PCs) - (e.g., PC3 and PC4) were able to account for 

land-cover changes (Byrne et al., 1980; Richard, 1984). Fung and LeDrew (1987) found 

that standard principal components (SPCs) are more accurate than the non-standardized 

components because of their better alignment along land-cover changes in the 
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multitemporal data structure. Chavez and Kwarteng (1989) reported that selective PCA 

results are easier to visually interpret than those from SPCs.  

 

Texture Analysis: 

The basic theory of texture analysis is that a discrete tonal feature is a connected set of 

pixels that all have the same or almost the same grey shade (brightness value) and each 

pixel of the texture image has a brightness value that represents the texture at that 

location (Jensen, 2004). If a small area of the image has little variation of discrete tonal 

features, the dominant property of that area is a grey shade. Conversely, if a small area 

has a wide variation of discrete tonal features, the dominant property of that area is 

texture. Texture analysis approaches are based on first and second order grey-level 

statistics and on the Fourier power spectrum and measures based on fractals. The 

first-order statistics of local areas such as means, variance, standard deviation, and 

entropy in pixel windows typically ranging from 3x3 to 5x5 to 7x7 are used (Hsu, 1978; 

Gong et al., 1992). However, they were not as effective as the brightness value 

spatial-dependent co-occurrence matrix measures (Haralick et al., 1973; Schowengerdt, 

1997). Jensen and Toll (1982) reported on the use of Haralick’s angular second moment 

(ASM) for use as an additional feature in the supervised classification of remotely sensed 

data obtained at the urban fringe and in urban change detection mapping. They found it 

improved the classification when used as an additional feature in the multispectral 

classification.  
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Vegetation Indices: 

Vegetation indices are based on the differential absorption, transmittance, and reflectance 

of energy by the vegetation in the red and near-infrared portions of the electromagnetic 

spectrum (Derring and Haas, 1980; Lyon et al., 1998; Jensen, 1996). In Landsat MSS 

data the ratio of near-infrared - band 4 and red - band 2 is significantly correlated with the 

amount of the green leaf biomass (Tucker, 1979). For Landsat TM, the ratio of 

near-infrared - band 4 and red - band 3 is adopted (Jensen, 1986; Masek et al., 2000). 

Vegetation indices have many subdivisions, including the Difference Vegetation Index 

(DVI), Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index 

(PVI), Ratio Vegetation Index (RVI), Soil Adjusted Ratio Vegetation Index (SARVI), Soil 

Adjusted Vegetation Index (SAVI), and the Transformed Soil Adjusted Vegetation Index 

(TSAVI) (Richardson and Everitt, 1992). Lyon et al. (1998) reported that NDVI was the 

best vegetation index for change detection as judged by laboratory and field results.  

 

2.3 Land-use/land-cover Classification 

Land-use/land-cover classification (LULC) based on statistical pattern recognition 

techniques applied to multispectral remote sensor data is one of the most often used 

methods of information extraction (Narumalani et al., 2002). In terms of emphasis on 

different pattern recognition, spectrally oriented classification procedures for land cover 

currently form the backbone of most multispectral classification activities (Lillesand et al., 

2004). They include supervised classification and unsupervised classification.  
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2.3.1 Supervised Classification 

In a supervised classification, the identity and location of some land-cover types are 

known a priori through a combination of fieldwork, interpretation of aerial photography, 

map analysis, and personal experience (Hodgson et al., 2003). The analyst attempts to 

locate specific sites in the remotely sensed data that represent homogenous examples of 

these known land-cover types. These sites are referred to as training sites. Multivariate 

statistical parameters (mean, standard deviation, covariance matrices, and correlation 

matrices) are calculated for each training site. Every pixel is then evaluated and assigned 

to the specific class based on these evaluation criteria (Jensen, 2004). Methods used to 

evaluate the pixels include minimum distance, parallelepiped, and maximum likelihood. 

Minimum distance is mathematically simple and computationally efficient, but it is 

insensitive to different degrees of variance in the spectral response data. Parallelepiped is 

insensitive to covariance, resulting in confusion for a parallelepiped classifier. The 

maximum likelihood classifier quantitatively evaluates both the variance and covariance 

of the category spectral response patterns (Lillesand et al., 2004).  

 

2.3.2 Unsupervised Classification 

Unsupervised classification does not utilize training data as the basis for classification. 

Rather, it involves algorithms that examine the unknown pixels in an image and 

aggregate them into a number of classes based on the natural groupings or clusters 

present in the image values. The basic premise is that values within a given land cover 

type should be close together in the measurement space, whereas data in different classes 

should be comparatively well separated (Lillesand et al., 2004). Algorithms include 
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K-means clustering (also called sequential clustering), Interactive Self-Organizing Data 

Analysis (ISODATA), fuzzy classification, and classification based on object-oriented 

image segmentation (Jensen, 2004). K-means and ISODATA clustering approaches are 

widely used (Lillesand et al., 2004). K-means clustering accepts the number of clusters to 

be located in the data first, and then assigns pixels in sequence to different classes 

according to the spectral distance of each pixel from the mean of each class. After all 

pixels have been classified in this manner, revised mean vectors for each of the clusters 

are computed. The revised means are then used as the basis to reclassify the image data. 

The procedure repeats until there is no significant change in the location of class mean 

vectors between successive iterations of the algorithm. ISODATA is an opposite method 

to the K-mean clustering. It starts with all pixels as a class and gradually splits it to a 

desired number of classes with standard deviation (Tou and Gonzalez, 1974).  

 

2.4 Combined Applications 

2.4.1 Differencing and Ratioing Methods for Other Enhancement 

Image differencing and ratio methods are not only limited to band-by-band subtraction 

and ratioing. They are also used as an important means to enhance results. Jensen and 

Toll (1982) used the differenced results from two different dates of texture analysis to 

improve change detection. Singh (1989) believed that NDVI differencing was one of the 

few, most accurate change detection techniques. Yuan and Elvidge (1998) adopted 

differencing and ratioing methods for PCAs to compare and evaluate accuracies of 

land-cover change detection. Forsythe (2004) applied differencing methods to 

pansharpened images.  
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2.4.2 Direct Multi-date Classification  

Direct multi-date classification is based on the single analysis of a combined dataset of 

the two dates in order to identify areas of change (Singh, 1986). Classes where changes 

occurred are expected to present statistics significantly different from where change did 

not take place and thus can be identified. Unsupervised classification is carried out by 

using the ISODATA method, in which the spectral distance is used and the pixels are 

iteratively classified until all pixels in the data are emerged into appropriate classes 

(Jensen, 1981; Mas, 1999; Weismiller, Scholz, and Momin, 1977). Fung and LeDrew 

(1987) and Macleod and Congalton (1998) applied PCs from merged multi-date data for 

change detection.  

 

2.4.3 Combination Image Enhancement/Post-classification Analysis 

 

Image enhancement is often combined with post-classification analysis. The change 

produced by an enhancement procedure is recoded into a binary mask, consisting of the 

change and non-change between the two dates. The binary mask is then overlaid with 

data from the second date. A traditional post-classification is conducted to yield from-to 

change information. This method may reduce change detection errors and provides 

detailed from-to change patterns (Pilon et al. 1988; Jensen 1996; Mas, 1999; Macleod 

and Congalton, 1998). 

2.4.4 Preprocessing Operations 

 

In addition to enhancement algorithms that are directly applied in change detection, 

geometrical registration, atmospheric correction, image normalization, and any other 

preprocessing operations, such as low and high pass filtering may also be important to 
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improve accuracy of change detection (Jensen, 1981; Hall et al., 1991; Yuan and Elvidge, 

1998; Song, et al., 2001; Yang and Lo, 2002).  

2.4.5 Other Methods  

Other methods in urban change detection include image regression, change vector 

analysis, tasselled cap transformation, Chi-square transformation, artificial neural 

networks, fuzzy fusion, Vegetation-Impervious Surface-soil (V-I-S), and 

knowledge-based vision systems (Singh, 1989; Ridd and Liu, 1998; Jensen, 2004; Ridd, 

1992; Wang, 1993; Dai and Khorram, 1999; Abuelgasim et al., 1999; Foody, 2001; Zhang, 

2001; Forsythe, 2004).  

2.5 Comparison of Change Detection Techniques 

Since change detection techniques have different conditions in data and purposes, it is 

difficult to compare the vast array of change detection methods (Jensen, 1986, 1996; 

Singh, 1989; Ridd and Liu, 1998; Mas 1999). From this point, no one single 

technique/algorithm is optimal. For instance, image differencing, image regression, and 

PCA are thought to perform better than the postclassification technique (Singh, 1989). 

However, Mas (1999) reported that the result of postclassification performed better than 

image differencing and PCA. This is because urban change detection techniques are 

closely related to data quality, resolutions, study area, and accuracy requirements (Jensen, 

1986). Overall, preclassification or enhancement techniques such as image differencing 

(Singh, 1989; Weismiller et al., 1977; Toll, 1980; Jensen and Toll, 1982; Ridd and Liu, 

1998; Yuan and Elvidge, 1998), image regression (Ridd and Liu, 1998), PCA differencing 

(including standardized and selective PCA) (Singh, 1989; Mas, 1999; Chavez and 

Kwarteng, 1989; Fung and LeDrew 1987; Macleod and Congalton, 1998); NDVI 
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differencing (Howarth and Boasson, 1983; Masek et al., 2000; Lyon et al., 1998) greatly 

improve the classification results and accuracy of detected urban change (Dai and 

Khorram, 1999). The postclassification technique has from-to patterns (Macleod and 

Congalton, 1998), but its accuracy is not as good as results from preclassification change 

detection techniques (Weismiller, 1977; Toll, 1980; Jensen, 1986). Fung and LeDrew 

(1988) reported the threshold values tightly associated with accuracies for different 

algorithms and noted that they are sensitive to different natures of change. Jensen (1986) 

pointed out that differencing or ratioing of spectral data is practical but may be too simple. 

Therefore, combination of methods (such as multi-date classification, preclassification 

with postclassification, and preprocessing operations) may produce better results in terms 

of decreasing the chance of error, and in improving the accuracy of detecting the nature 

and amount of change (Jensen, 1982; Macleod and Congalton, 1998; Mas, 1999).  

2.6 Accuracy Assessment 

With the advent of more advanced digital satellite remote sensing techniques, the 

necessity of performing an accuracy assessment received renewed interest (Congalton, 

1991). The accuracy of remote sensing-derived thematic information is the foundation for 

further data analysis and decision-making (Muchoney and Strahler, 2002; Kyriakidis et 

al., 2004).  

 

Errors in remote sensing-derived products may come from a variety of sources including 

system errors from detectors in satellite sensors, severe atmospheric conditions, and 

human errors when processing the data. Randomly unwanted atmospheric conditions, 

such as haze, smog, or fog will dramatically affect the quality and accuracy of the 
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information that is extracted. It is likely that human errors will be introduced throughout 

the image processing, information extraction, data conversion, error assessment, and even 

decision-making stages (Jensen, 2004).  

2.6.1 Methods of Accuracy Assessment 

Jensen (2004) gives a general procedure of accuracy assessment: 

 State accuracy assessment objectives and problems 

 Select methods of accuracy assessment 

 Compute total observations required in the sample 

 Select sampling design 

 Obtain ground reference data at observation locations using a response design 

 Error matrix creation and analysis 

 Accept or reject previously stated hypothesis 

 Distribute results if accuracy is acceptable 

 

 

Reference Data: In order to adequately assess the accuracy of the remotely sensed 

classification, accurate ground or reference data must be collected (Congalton, 1991). 

Ideally, the ground reference test data are obtained by visiting the site on the ground and 

making very careful observations that can be compared with the remote sensing-derived 

information for the exact location. Unfortunately, it is difficult to actually visit all the 

sites identified in the random sample (Jensen, 2004). Therefore, people may select other 

available reference data, such as land-use or aerial photography as a surrogate for ground 

reference test information (Congalton, 1991; Morisette et al., 2004). The general rule of 

thumb is that the resolution of aerial photography should be substantially higher in spatial 

or spectral resolution than the imagery used to derive the classification (Jensen, 2004; 

Congalton, 2004).  

Sample Size: The actual number of ground reference test samples to be used to assess the 

accuracy of individual categories in a remote sensing classification map is very important. 
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Due to the expense to collect sample points, sample size must be kept to a minimum, yet 

it is critical to maintain a large enough sample size so that any analysis performed is 

statistically valid (Congalton, 2004). Generally, an appropriate sized sample may be 

estimated using conventional statistics (Foody, 2002). However, the majority of 

researchers have used an equation based on the binominal distribution or the normal 

approximation to the binomial distribution to compute the required sample size 

(Congalton, 2004).  

Sampling Design: Sampling design is an important part of any accuracy assessment 

(Congalton, 2004). Sampling design (or sampling scheme) includes simple random 

sampling, stratified random sampling, systematic sampling, unaligned sampling, and 

cluster sampling (Jensen, 2004). Congalton (1988) performed simple random sampling 

and got desirable statistical properties, however, he pointed out this sampling scheme is 

not always very practical to apply. Simple random sampling tends to undersample small 

but possibly very important areas unless the sample size is significantly increased. The 

random samples may also be located in inhospitable or access-denied locations (Jensen, 

2004). Therefore, stratified random sampling is recommended where a minimum number 

of samples are selected from each stratum. Even stratified random sampling can be 

somewhat impractical because of having to collect information for accuracy assessment 

at random locations on the ground (Congalton, 2004).  

 

Descriptive Evaluation – The most common descriptive statistic is overall accuracy, 

which is computed by dividing the total correct (i.e., the sum of the major diagonal) by 

the total number of sample units in the error matrix. Producer’s accuracy (related to 
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omission error) is a measure to indicate how correct a reference sample unit can be 

classified. User’s accuracy (related to commission error) indicates how well a sample on 

map represents category on the ground (Story and Congalton, 1986).  

 

Discrete Multivariate Analysis – Since 1983, discrete multivariate techniques have been 

used for performing statistical tests on the classification accuracy of digital remotely 

sensed data (Congalton and Mead, 1983; Hudson and Ramm, 1987; Lillesand and Kiefer, 

1994; Foody, 2002). One analytical step to perform once the error matrix has been built is 

to “normalize” or standardize the matrix using a technique known as “MARGFIT” 

(Congalton et al., 1983). The second discrete multivariate technique of use in accuracy 

assessment is called Kappa (Cohen, 1960). Kappa can be used as another measure of 

agreement or accuracy. Improvement has been made by Landis and Koch (1977) by 

lumping the possible range (from –1 to +1) into three groups: a value greater than 0.8 

representing a strong agreement; a value between 0.4 and 0.8 representing moderate 

agreement, and a value below 0.4 representing poor agreement.  

 

The power of kappa analysis is that it provides two statistical tests of significance. It is 

possible to test whether an individual land-cover map generated from remotely sensed 

data is significantly better than a map generated by randomly assigning labels to areas. 

The second test allows for the comparison of any two matrices to see whether they are 

statistically, significantly different. In this way, it is possible to determine that one 

method/algorithm/analyst is different from another one and, based on a chosen accuracy 

measure (e.g., overall accuracy), to conclude which is better (Congalton, 2004).  
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2.7 Integration with GIS 

A Geographic Information System (GIS) is a computer-based systems that can store and 

retrieve, edit and create, analyse and calculate, display and map spatial data (Aronoff, 

1991; Maguire et al., 1991). More important is that most of traditional vector datasets, 

including many ancillary data for remote sensing, are stored on GIS (Jensen, 2004). GIS 

is not only good at manipulating vector data, but also good for analyzing raster data. 

Besides, the seamless integration between spatial and aspatial attributes make it powerful 

in spatial analysis associated with census data, demographic data, and statistic methods 

(ESRI, 2005). Therefore, it is important to integrate GIS into urban change detection so 

that the results produced from image processing are further analysed and developed by 

introducing census data and other socio-economic data. 

 

2.8 Summary 

The vast array of change detection techniques show that each technique has its own 

characteristics, which are probably only suitable for specific situations closely associated 

with data conditions and study purposes (See Section 2.5). Therefore, no one technique is 

absolutely optimal to apply in all cases. Deeply understanding the original data, 

suitability of related techniques, accuracy requirements and exploring appropriate 

algorithms (including the combined methods) would be helpful to more fully utilize the 

potential of Landsat data (Jensen, 1986; Singh, 1989). 

 

 

 



 

30 

CHAPTER 3: METHODOLOGY 

The methodology is based on the availability and quality of Landsat data for this research, 

therefore a data analysis was first conducted.  

 

3.1 Data Analysis and Preparation 

3.1.1 Years 

The interval between the available Landsat images ranged from 2 to 8 years, i.e., 2 year 

interval from 1999 to 2001 and 8 years between 1977 and 1985. However, most intervals 

between adjacent dates ranged between 2 and 5 years. The length of interval between 

compared dates does affect the method that is used to detect the change. The reason is 

that urban growth generally follows a forward rotation from green space to excavated, 

and from excavated to built-up (Forsythe, 2002; Forsythe, 2004). A long interval between 

compared years will skip some changes in this forward rotation because the majority of 

urban change has already completed more than one forward rotation. A short interval, 

however, will detect each change within this forward rotation. Therefore, appropriate 

techniques to deal with these two situations must be considered. Another consideration is 

the connection with census data. The closest census data specifically associated with the 

Landsat data are 1971, 1976, 1981, 1986, 1991, 1996 and 2001. 

3.1.2 Registration 

To make all selected data comparable, geometric registration is required. The data from 

1972 to 2001 were previously registered with Root Mean Square (RMS) errors of 0.25 

pixels or less in both the X and Y directions. The 2004 image was registered to these 

years of data. 
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3.2 Method Development 

The methodology focused on two parts: the urban extent and the change between dates of 

image acquisition. However, due to the differences between Landsat MSS data and 

Landsat TM/ETM+, a single method may be not sufficient. Moreover, urban change 

detection techniques as outlined in Chapter 2 may not be completely suitable for the data 

available for this research. Therefore, the development of the methodology mainly 

depended on experiments, by which the optimal methods were selected and some new 

combined methods were created.  

 

3.2.1 Experiment # 1 – Enhancement vs. Without Enhancement 

Although enhancement techniques help improve classification, their effects may be 

different for different types of Landsat data. The comparison between classifications with 

enhancement and without enhancement will examine effects on MSS, TM, and ETM+ 

data. Three years (1977, 1999, and 2001) were selected to conduct the comparison 

between enhancement and without enhancement. The Town of Bolton (Figure 3.1) is 

located in the northwest corner in the study area in Peel region. Bolton is isolated from 

the contiguous urban areas, and surrounded by the farm fields. This is an ideal place to 

examine the different results from enhancement and without enhancement in terms of 

how well the urban land cover is separated from green space or fields.  
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Figure 3.1 Bolton area in 1999 ETM+ imagery 

 

The comparison between enhancement and without enhancement was conducted by 

supervised classification. Classification without enhancement only included original 

bands as input whereas classification with enhancement included additional enhanced 

results as input. The selected enhancements were NDVI, texture analysis, and principal 

components because they were deemed as the most common enhancement methods 
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(Jensen, 1986; Howarth, 1989; Masek et al, 2000; Forsythe, 2004). The training sites 

between two classifications were kept the same.  

The greatest change between enhancement and without enhancement occurred with the 

TM data. Figure 3.2 shows that before enhancement, Bolton’s urban area is not 

completely separated from farm fields and rivers on its north side. However, 

enhancement helps separate urban from rural areas. Landsat MSS data also benefit from 

enhancement. Figure 3.3 shows that before enhancement, Bolton’s urban area is totally 

indiscernible from its surrounding rural areas. Enhancement removes a lot of noise in 

rural areas. However, it is not completely removed. From Figure 3.4, the enhancement for 

ETM+ data is also obvious. However, the change between enhancement and without 

enhancement is not as great as TM or MSS data. Bolton’s urban area is separated very 

well even before the enhancement. 

  

Figure 3.2 Classification with enhancement and without enhancement (2001 TM).  

Left: without enhancement; Right: enhancement 
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Figure 3.3 Classification with enhancement and without enhancement (1977 MSS).  

Left: without enhancement; Right: enhancement 

 

  

Figure 3.4 Classification with enhancement and without enhancement (1999 ETM+).  

Left: without enhancement; Right: enhancement 
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3.2.2 Experiment # 2 – Different Types of Enhancement 

The results from Experiment #1 show that these selected enhancements are still 

insufficient to distinguish urban from rural areas with MSS data and their effects on the 

three types of Landsat data are quite different. It is necessary to explore the enhancements 

further and discover some other combination of enhancements so that the urban can be 

maximally separated from the rural areas.  

 

NDVI  

NDVI helps to differentiate vegetation and non-vegetation in two aspects: healthy status 

and water content. As stated in Experiment # 1, Bolton is surrounded by the farm fields. 

It is also a good place to verify the NDVI results due to its ability to separate the urban 

areas from rural. In order to see the images more clearly, the selected area is zoomed in 

compared with the previous selected area. MSS NDVI uses Band 2 and Band 4 as input 

(Jensen, 1986; Howarth, 1989) whereas TM and ETM+ data use Band 3 and Band 4 as 

input (Masek et al., 2000).  

 

Figure 3.5 shows the NDVI results for the 1977 MSS, 2001 TM, and 1999 ETM+ data.  

Dark tones in images are non-vegetated land cover that represent urban and bare soil. The 

light tones in the images are vegetated crop fields and forests. The TM and ETM+ data 

were better than MSS data in separating non-vegetation from the vegetation land cover 

through NDVI. This is because the spatial resolution of input channels – 30m in TM and 

ETM+ is much higher than the 79m MSS data.  
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Figure 3.5 NDVI between MSS, TM, and ETM+ 

Upper: 1977 MSS; Lower left: 2001 TM data; Lower right: 1999 ETM+ 
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Texture Enhancement 

Texture enhancement is widely used to differentiate urban features from rural areas. Band 

2 in TM data is deemed the best data for texture analysis (Masek et al., 2000; Forsythe, 

2004). The experiment used band 2 from the 1999 ETM+ as input. ETM+ band 2 has the 

same spectral resolution as TM band 2 and is close to MSS band 1. The selected area is 

Vaughan (Figure 3.6). This area includes a typical urban area adjacent to a rural area. The 

experiment indicated that texture analysis using a mean measure was the best. Window 

size is also associated with the texture enhancement and the results showed that a 3x3 

window was the best. Figure 3.7 shows the result from the homogeneity measure with a 

3x3 window. It is totally unable to differentiate the urban features. Figure 3.8 shows the 

results from the mean measure with different window sizes. Obviously, the 3x3 size is 

able to capture the texture in more detail than the 7x7 size.  

 

PCA  

PCA simplifies information into fewer components, which are very useful in enhancing 

classification procedures. The 1999 ETM+ data was selected with input bands/channels 1, 

2, 3, 4, 5, and 7. The selected area is the same as the texture analysis because this area not 

only includes built-up areas and rural area, but also includes excavated areas. 

Figure 3.9 shows the PCA results – PC1, PC2, and PC3. PC1 captures the excavated area, 

rural area, and all built-up areas. PC2 is only sensitive to the built-up urban feature, 

which shows as dark in picture, but insensitive to the excavated. PC3 is sensitive to both 

the excavated and the built-up areas. Main components accounting for different land 

cover features will greatly improve the classification. 
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Figure 3.6 Vaughan area in 1999 ETM+ imagery 

 

 

 

 

 

 



 

39 

 

  

Figure 3.7 Texture analysis – Homogeneity (3x3 FLSZ). 

 

 

  

Figure 3.8 Texture analysis – Mean with different window sizes. 

Left: 7x7 FLSZ; Right: 3x3 FLSZ; Both with mean measure 
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Figure 3.9 PCA results from 1999 ETM+ data 

Upper row is PC1 and PC2 from left to right. Bottom is PC3 
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Radiometric ratioing  

Due to the coarser resolution, it is often more difficult to differentiate urban from rural 

areas in MSS than TM data. If image ratioing (Howarth and Boasson, 1983) is used, the 

MSS data will be resampled to 30m resolution in unchanged areas between two dates. To 

verify this idea, the Brampton area was selected (Figure 3.10). Between 1977 and 1985 

representing MSS and TM respectively, Brampton expanded greatly. This area consists of 

not only residential built-up area, but also industrial areas, which are surrounded by the 

rural areas. It is a good place to verify ratioing results between different types of Landsat 

data.  

 

Image ratioing is a resampling process. The image ratio between TM 2 and MSS 1 is the 

division of values between one pixel in the1977 MSS image and four corresponding 

pixels in 1985 TM image. Each MSS pixel is split into four pixels and resampled to a 

30m spatial resolution. Figure 3.11 shows this resampling process.  

 

The unchanged urban area between two dates has a ratio value 1.0, showing a common 

tone in the resampled image, which is different from growth urban areas, which have 

values either higher or lower than 1 with either brighter or darker tones in the resampled 

image. More important is that the resampled 30m spatial resolution results in the 

unchanged urban area having a more detailed urban texture, which greatly helps in 

distinguishing unchanged urban areas from urban growth and rural areas. 
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Figure 3.10 Brampton area in 1985 TM imagery 
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Figure 3.11 Resampling MSS data into 30m spatial resolution with TM data 

 

 

Figure 3.12 shows the difference of between original 1977 MSS 1 and 1985 TM 2 in 

terms of separating urban from the rural areas, where urban boundaries are marked with 

pink in left picture and yellow in right picture. Figure 3.13 is the result of radiometric 

ratioing between 1977 MSS 1 and 1985 TM 2. Zone I is the unchanged urban where the 

resolution becomes 30m after image ratioing. Zone II is the growth urban area since 1977, 

in which the new excavated showed brighter tone and new developed darker tone. Zone 

III is rural area for both years.  

 

The result in Figure 3.13 indicates that unchanged urban area in Zone I are easier to 

identify than urban areas marked with pink in Figure 3.12 (before resampling), in which 

the improvement in urban texture is obvious. It indicates that when this method is applied 

to other MSS bands – 2, 3, 4, and the enhanced results from NDVI, texture analysis, and 

PCA, information will be enhanced. Table 3.1 is contrast table of bands between MSS 

and TM used in image ratioing.  
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Figure 3.12 Comparison between 1977 MSS and 1985 TM 

Left: 1977 MSS 1 with pink urban boundary;  

Right: 1985 TM 2 with yellow urban boundary 

 

Figure 3.13 Ratioing result between 1977 MSS 1 and 1985 TM 2 
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Table 3.1 Image ratioing between 1977 MSS and 1985 TM 

Ratio 1977 1985 Ratioing 

R1 MSS 1 TM 2 TM 2 / MSS 1 

R2 MSS 2 TM 3 TM 3 / MSS 2 

R3 MSS 3 TM 4 TM 4 / MSS 3 

R4 MSS 4 TM 5 TM 5 / MSS 4 

R5 NDVI NDVI 1985 NDVI/ 1977 NDVI 

R6 Texture Texture 1985 Tex/ 1977 Tex 

R7 PC1 PC1 1985 PC1/ 1977 PC1 

R8 PC2 PC2 1985 PC2/ 1977 PC2 

 

Figures 3.14 – 3.17 below show the different classification results with the addition of 

enhancements in 1977 MSS data. Figure 3.14 is the classification without any 

enhancements, i.e., using original 4 bands as input. The main problem is the noise in rural 

areas that makes it difficult to isolate the urban features from the rural. Figure 3.15 uses 

additional enhancements - NDVI, texture, and PC1, PC2. The result removed both noise 

in the rural areas and pixels inside the contiguous urban. The remarkable improvement 

occurred after using image ratioing with 1985 TM data, which have a 30m spatial 

resolution. Figure 3.16 shows the classification result from the addition of 4-band ratioing 

enhancements with 1985 TM data from R1 to R4.  Figure 3.17 uses all enhancements – 

4 original bands, NDVI, texture, PC1, PC2, and 8 ratioing enhancements from R1 to R8 

(See Table 3.1). Ratios from NDVI, texture analysis, PC1, and PC2 improve the 

delineation of contiguous urban areas, particularly in the central part of Toronto.  
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Figure 3.14 Classification without any enhancement from 1977 MSS 

Input: 1, 2, 3, 4 
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Figure 3.15 Classification with enhancement – I from 1977 MSS 

Input: 1, 2, 3, 4, NDVI, Texture, PC1, PC2 
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Figure 3.16 Classification with enhancement – II from 1977 MSS 

Input: 1, 2, 3, 4, NDVI, Texture, PC1, PC2,  

+ R1, R2, R3, and R4 
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Figure 3.17 Classification with enhancement – III from 1977 MSS 

Input: 1, 2, 3, 4, NDVI, Texture, PC1, PC2, 

R1, R2, R3, R4 

+ R5, R6, R7, and R8 
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Image differencing  

All TM data are of high quality imagery except for 2004, which includes a small number 

of clouds. Compared with other years of TM data, it is also found that 2004 produces 

more noise in rural areas under the same enhancements with other TM data. It is possible 

to have different quality TM imagery between different dates due to the different seasons 

and atmospheric conditions. To solve this problem, the image differencing method is 

considered.  

 

Image differencing is an enhancement usually used to detect the change between two 

different dates (Jensen, 1986; Singh, 1989). However, image differencing is not limited to 

this, it is widely used in other enhancements as the combined enhancement (Toll, 1982; 

Singh, 1989; Masek et al., 2000). 

 

Different bands in TM data are designed for different purposes. The first three bands 

(blue-green, green, red) are all sensitive to cultural/urban features band 5 and 7 (two 

mid-infrared bands are sensitive to moisture and water content (Jensen, 1983; Campbell, 

1996). Ideally, the subtraction between visible bands and short wave infrared bands will 

enhance the separation of urban features from the rural background.  

 

Image differencing was conducted using the 2004 TM data in the north part of Brampton 

area. This is because this area consists of urban features, excavated areas (to the north of 

Brampton), and a complicated rural background – farm fields, vegetation along with 

rivers, and bare-soils.  
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Figure 3.18 shows the classification without enhancement and with enhancements. The 

enhancements used in right image were NDVI, texture analysis, PC1, PC2, and PC3. 

With these enhancements, urban feature pixels inside the contiguous urban area are 

removed when noise pixels in rural areas are eliminated.  

 

  

Figure 3.18 Classification with enhancement and without enhancement in 2004 

Left: without enhancement. Input: 1, 2, 3, 4, 5, 7; 

Right: enhancement. Input: 1,2 , 3, 4, 5, 7, NDVI, Texture, PC1, PC2, and PC3 

Colouring: white - urban extent; grey – green space; blue – water 

 

Figures 3.19 and 3.20 show original enhancements created from the 2004 TM data. 

Figure 3.19 has a NDVI and texture enhancement. Dark tones representing non-vegetated 

areas are well isolated from vegetation features – i.e. crop fields and forests. However, 

non-vegetated bare soils make it difficult to separate urban features. The texture 
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enhancement produced from the 2004 TM data has a similar problem. Figure 3.20 shows 

the PCA enhancements. Only PC2 and PC3 separated urban from green space to some 

extent. PC2 captures the majority of urban features, but is not sensitive to the excavated 

areas. PC3 is sensitive to the excavated areas, thus performs well in isolating excavated 

from other land cover features. However, it is not sensitive to the difference between 

urban and rural features. In the PC3 image, the tone of rural areas is very close to the tone 

of urban areas. This explains why urban feature pixels are also eliminated along with the 

removal of noise pixels in rural areas.  

 

  

Figure 3.19 NDVI and texture analysis from 2004 TM 
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Figure 3.20 PCA from 2004 TM 

Upper row is PC1 and PC2 from left to right. The bottom is PC3 
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Therefore, the new combination of bands was explored. Four subtractions (Figure 3.21 

and 3.22) were created, including subtraction between bands 5 and 1, subtraction between 

bands 5 and 2, subtraction between 7 and 1, and subtraction between 7 and 3. These four 

subtractions performed better than any other combination. In order to make the value of 

subtractions positive, a 60 value is added to these subtractions because mean values in 

band 1, 2, 3, 5, and 7 range from 74 to 91. The results in Figure 3.21 indicate that the 

subtraction between band 5 and 1 is almost the same as the subtraction between band 5 

and 2, particularly for urban features. This is because band 5 is sensitive to the moisture 

in vegetation and soil, the subtle change between left and right images in Figure 3.21 

only occurred on the rural areas. The differencing results from band 5 with band 1 and 2 

perform very well in separating urban from rural areas. Subtraction between band 7 and 1 

and subtraction between band 7 and 3 (Figure 3.22) also enhance the separation of urban 

features from rural areas. However, the subtraction between band 7 and 1 is better than 

the subtraction between band 7 and 3. The result between band 7 and 3 cannot distinguish 

the excavated from the rural areas. This is because band 3 is not sensitive to soil features.  
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Figure 3.21 Image differencing between bands in 2004 TM – I 

Left - 1/5: ΔB1 = B5 - B1 + 60; Right – 2/5: ΔB2 = B5 - B2 + 60 

  

Figure 3.22 Image differencing between bands in 2004 TM – II 

Left - 1/7: ΔB3 = B1 - B7 + 60; Right – 3/7: ΔB4 = B3 – B7 + 60 

The classification was conducted by inputting the original bands (1, 2, 3, 4, 5, and 7), 



 

56 

enhancements from NDVI, texture, PC1, PC2, PC3, and new image differencing 

enhancements – B5/1, B5/2, B7/1, and B7/3. The result is showed in Figure 3.23. The 

result indicates that the new image differencing enhancements helped in identifying the 

excavated areas, keeping urban feature pixels in contiguous urban area are excluded by 

the previous enhancements – NDVI, texture, and PCs, when removing the noise in the 

rural areas.  

 

  

Figure 3.23 2004 Classifications between different enhancements 

Left: 5 enhancements – NDVI, Texture, PC1, PC2, and PC3  

Right: 5 enhancement – NDVI, Texture, PC1, PC2, and PC3 + 

   4 differencing enhancements – ΔB1, ΔB2, ΔB3, ΔB4. 

Colouring: white - urban area; grey – rural area; blue - water 
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3.2.3 Experiment # 3 – Supervised vs. Unsupervised Methods 

The determination of methods of classification is also important. For this urban extent 

classification, only three types of land cover - urban, green space, and water were 

involved. For instance, urban features consist of residential buildings, industrial buildings, 

playgrounds, roads, and airports. They are straightforward to identify and train. The 

potential problem with this method in this research is the consistency of site training 

work between different dates. Unsupervised methods are superior to supervised method 

in terms of being consistent between different dates of imagery because it mainly depends 

the radiance value itself. Unsupervised classification is however likely to introduce the 

human errors when merging or transferring unknown types of land covers into known 

classes. No matter which method was used, the resulting classifications were verified for 

accuracy.  

 

To find out the best classification method, three pairs of comparisons between supervised 

classification and unsupervised classification are performed. The 1977 MSS, 2001 TM, 

and 1999 ETM+ data were used. The unsupervised classification used the K-means 

clustering method with 255 classes, which are eventually merged into three classes – 

urban, green space (rural area), and water. The supervised classification used the 

Maximum Likelihood method, using training sites for each of the classes – urban, green 

space, and water. The input channels between the unsupervised classification and 

supervised classification were the same. To verify the results, accuracy statistics are also 

given in each result, in which 300 random sampling points were generated in PCI. The 

Brampton area was selected for comparison. 
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Figure 3.24 and Table 3.2 show the results for unsupervised and supervised 

classifications using the 1977 MSS data. Figure 3.25 and Table 3.3 show the results for 

the 2001 TM, while Figure 3.26 and Table 3.4 show the results for the 1999 ETM+ data.  

  

Figure 3.24 Unsupervised and supervised classifications in 1977 MSS 

Left: unsupervised; Right: supervised. 

Input: 1,2, 3, 4, NDVI, texture, PC1, PC2, R1 to R8 

Table 3.2 Accuracy statistics for two classifications (1977MSS) 

Statistics Unsupervised (left) Supervised (right) 

Overall Accuracy 86.333% 97.667% 

Overall Kappa 0.777% 0.963% 

Producer’s Accuracy 

(urban) 

36.364% 91.837% 

User’s Accuracy (urban) 76.923% 93.750% 

Kappa Statistic (urban) 0.7174 0.9253 
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Figure 3.25 Unsupervised and supervised classifications in 2001 TM 

Left: unsupervised; Right: supervised.  

Input: 1,2, 3, 4, 5, 7, NDVI, texture, PC1, PC2, PC3  

 

Table 3.3 Accuracy statistics for two classifications (2001 TM) 

Statistics Unsupervised (left) Supervised (right) 

Overall Accuracy 97.000% 97.000% 

Overall Kappa 0.955% 0.954% 

Producer’s Accuracy 

(urban) 

92.000% 91.139% 

User’s Accuracy (urban) 95.833% 97.297% 

Kappa Statistic (urban) 0.9444 0.9633 
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Figure 3.26 Unsupervised and supervised classifications in 1999 ETM+  

Left: unsupervised; Right: supervised. 

Input: 1,2, 3, 4, 5, 7, NDVI, texture, PC1, PC2, PC3 

 

Table 3.4 Accuracy statistics for two classifications (1999 ETM+) 

Statistics Unsupervised (left) Supervised (right) 

Overall Accuracy 97.667% 97.667% 

Overall Kappa 0.980% 0.964% 

Producer’s Accuracy 

(urban) 

93.243% 95.833% 

User’s Accuracy (urban) 97.183% 94.521% 

Kappa Statistic (urban) 0.9626 0.9279 
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From the three comparisons, the 1977 MSS data showed a great difference between 

unsupervised classification and supervised classification whereas the TM and ETM+ data 

did not show remarkable differences between these two methods. Table 3.2 showed the 

accuracy statistics for two classifications in 1977 MSS. The overall accuracy of 1977 

MSS is 86.333% from the unsupervised classified map while it is 97.667% from the 

supervised map. The producer’s accuracy from the unsupervised classified map result is 

36.364% while it is 91.837%. The user’s accuracy from the unsupervised map result is 

76.923% while it is 93.75%. This indicates that the urban feature is not well categorized; 

only about one third of the urban features are captured. Nearly one quarter of the 

categorised urban features in the result map is not truly representing the ground truth 

urban feature in the unsupervised classification result. Conversely, above 90% urban 

features are categorised into urban class and above 90% categorised urban class truly 

represented the ground truth urban feature. Kappa for urban feature from unsupervised 

classification is 0.7174 while that from supervised classification is 0.9253. The overall 

Kappa is 0.777% for the unsupervised result, and 0.963% for the supervised result. It also 

indicates that supervised classification is superior to the unsupervised classification in 

terms of inclusively and correctly capturing urban feature from 1977 MSS data.  

 

The results from TM and ETM+ data (Figure 3.25 and 3.26 respectively) did not show 

distinct differences between unsupervised classification and supervised classification. 

Table 3.3 showed the accuracy statistics for the two classification methods in 2001 TM. 

The overall accuracy in 2001 TM is 97% for both unsupervised and supervised 

classification. The producer’s accuracy for the 2001 unsupervised classification 92% is 
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very close to that for the supervised classification (91.139%). The user’s accuracy is 

95.8% for unsupervised classification and 97.3% for supervised classification. The 

overall kappa (0.955% for unsupervised and 0.954 for supervised) and kappa for urban 

feature (0.9444 for unsupervised and 0.9633 for supervised) keep consistent with the 

accuracy statistics above. It indicates that supervised classification is a little bit superior 

to unsupervised classification in 2001 TM data.   

 

Table 3.4 showed the accuracy statistics for two classifications in 1999 ETM+. The 

overall accuracy of two classifications is the same, 97.667%. The producer’s accuracy of 

the unsupervised method 93.243% is little bit lower than the supervised method 95.833%, 

indicating supervised classification in 1999 ETM+ is more inclusive in categorizing 

urban feature than unsupervised classification. However, the user’s accuracy of the 

unsupervised method is higher than the supervised method, indicating that unsupervised 

classification is more accurate in categorizing the urban feature. The overall kappa 0.98% 

for unsupervised, 0.964% for supervised, and kappa for urban 0.9626 for unsupervised, 

0.9279 for supervised show that unsupervised classification is a little bit superior to 

supervised classification in overall.  

 

In order to further justify which method is more appropriate for TM and ETM+ data, 

additional TM data were analyzed. The 1985 TM data (Figure 3.27) demonstrated a 

distinct difference between unsupervised classification and supervised classification. 

Table 3.5 shows the accuracy statistics. The overall accuracy for unsupervised 

classification is 88.667% while it is 97% for supervised classification. Producer’s 
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accuracy for unsupervised classification is only 53.125% while it is 91.525% for 

supervised classification. User’s accuracy for unsupervised classification is 94.444%, 

which is very close to 93.103 for supervised classification. Accuracy statistics above 

indicate that the main difference between these two classification is the inclusion 

performance, in which supervised classification is much superior to the unsupervised 

classification. Nearly only half urban features are categorised into urban class. The 

overall kappa is consistent with conclusion above.  

 

  

Figure 3.27 Unsupervised and supervised classifications in 1985 TM 

Left: unsupervised; Right: supervised. 

Input: 1,2, 3, 4, 5, 7, NDVI, texture, PC1, PC2, PC3 

 

Table 3.5 Accuracy statistics for two classifications (1985TM) 

Statistics Unsupervised (left) Supervised (right) 

Overall Accuracy 88.667% 97.000% 

Overall Kappa 0.820% 0.953% 

Producer’s Accuracy 

(urban) 

53.125% 91.525% 

User’s Accuracy (urban) 94.444% 93.103% 

Kappa Statistic (urban) 0.9294 0.9142 



 

64 

The 1990 TM data (Figure 3.28) also showed a significant difference between the two 

classifications. Table 3.6 shows the overall accuracy is 93.667% for unsupervised 

classification whereas it is 98.333% for supervised classification. The supervised 

classification performed better than the unsupervised classification in overall land cover 

classification. The producer’s accuracy is 72.581% for unsupervised classification 

whereas it is 94.03% for supervised classification. Nearly one third of urban features 

were missed in the unsupervised urban classification whereas urban features in the 

supervised classification were well categorised. The user’s accuracy 95.745% for the 

unsupervised classification and 98.438% for supervised classification are very close, but 

the supervised classification is still a little bit better than unsupervised classification in 

terms of truly representing urban features. The overall kappa of 0.906% for the 

unsupervised classification and 0.974% for the supervised classification show that the 

supervised is more accurate in overall land cover classification. The kappa for urban 

extent of 0.9464 for unsupervised and 0.9799 for supervised demonstrated that 

supervised classification is superior to unsupervised classification in urban classification.  
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Figure 3.28 Unsupervised and supervised classifications in 1990 TM  

Left: unsupervised; Right: supervised. 

Input: 1,2, 3, 4, 5, 7, NDVI, texture, PC1, PC2, PC3 

 

Table 3.6 Accuracy statistics for two classifications (1990TM) 

Statistics Unsupervised (left) Supervised (right) 

Overall Accuracy 93.667% 98.333% 

Overall Kappa 0.906% 0.974% 

Producer’s Accuracy 

(urban) 

72.581% 94.030% 

User’s Accuracy (urban) 95.745% 98.438% 

Kappa Statistic (urban) 0.9464 0.9799 

 

Based on the these 5 years of comparisons between unsupervised classification and 

supervised classification, it can be concluded that using supervised classification for MSS 

and TM data is superior to the unsupervised classification. It also can be used to 1999 

ETM+ data because the performance between supervised and unsupervised classification 

is very close. To make the classification consistent, the supervised classification was 

selected for all data.  
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3.2.4 Experiment # 4 – Change Detection 

Using band 2 for image differencing is superior for most of urban change applications 

(Ridd and Liu, 1998). Therefore, urban change detection is performed by subtracting the 

radiance values from two different years. Because pixels of the change are distributed in 

two tails in histogram whereas pixels of unchanged features stay in the middle part close 

to the mean value, it is necessary to add a value to the change result so that both tails can 

be captured (Jensen, 1983).  

 

The process uses the following equation for change between two different dates, in which 

a 127 value as a median of 255 is added.  

∆V = V2 – V1 + 127                                            (1) 

Where  

∆V is radiance difference between two different years 

V2 is radiance value in present year 

V1 is radiance value in previous year 

 

The Figures 3.29 and 3.30 show the samples of image differencing between 1994 and 

1999. The two tails in yellow in Figure 3.29 are the parts where land cover changed 

whereas the middle part around the mean value (here is 149) is the unchanged part 

between the two dates. To capture the two tails of changes between 1994 and 1999, a 

script is used:  
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if ( %20 >= 166) then 

%30=%20+50 

elseif (%20 < 142.75) then 

%30=%20 -50 

else 

%30 = 149 

endif 

 

Where  

%20 is information channel from equation (1) 

%30 is information to store new result 

 

The result is showed in Figure 3.30. 

 

Figure 3.29 Change distribution in image differencing histogram 

 

(2) 
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Figure 3.30 Captured change in two tails 

 

The script from equation (2) reclassifies the distribution of pixels. All unchanged pixels 

are given a value 149 (original mean value) whereas the values of the two tails remain 

what they were originally. Optimal thresholds to cut off the two tails were adjusted on the 

basis of experiment by checking against imagery and aerial photography between the two 

dates. Two captured tails represent different types of changes (Jensen, 1986; Forsythe, 

2002; Forsythe, 2004). The left tail in imagery showing dark tones is the change from the 

excavated to built-up areas or from the ploughed back to the crop fields, which will be 

categorised into the change class – new developed. The right tail showing brighter 

imagery is the change from green space to excavated, which will be categorised into the 

change class - new excavated. However, the right tail is more complicated than the left 

tail. The right tail may also include change directly from green space to built-up, which 

will also be categorised into change class – new developed. The first change in right tail 

from green space to excavated has brighter tones than the second change directly from 
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green space to built-up. Pixels in the second change are distributed adjacent to pixels in 

the middle (unchanged) part. Noise is the main problem when the lower threshold 

boundary is close to the mean value representing the unchanged pixels.  

 

To solve this problem, an unsupervised classification with ISODATA was conducted, in 

which 20 classes were used in change classification. The original classes were merged 

into unchanged, change from green space to excavated, change from green space to 

built-up, and change from excavated to built-up. Compared with changes distributed in 

the two ends of the histogram, the second change directly from green space to built-up 

was not separated well from the unchanged part distributed in the middle of the histogram. 

When the threshold was selected to fully capture the second change, the pixels in the 

unchanged were also introduced. It indicated that the values of pixels between the second 

change and the unchanged part in band 2 could not be completely separated. The 

resolution is inadequate to allow doing so. Appropriate additional enhancements are 

necessary.  

 

Whether or not the second change is involved in urban change depends on the length of 

interval for the two dates of imagery. The length of intervals between available dates is 

listed in Table 3.7, from which it can be determined how many dates involve the second 

change and what method is appropriate for urban change detection.  
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Table 3.7 Lengths of interval between compared dates 

Intervals Length (Years) 

1972 - 1974 2 

1974 - 1977 3 

1977 - 1985 8 

1985 - 1987 2 

1987 - 1990 3 

1990 - 1994 4 

1994 - 1999 5 

1999 - 2001 2 

2001 - 2004 3 

 

Urban development follows a rotation from green space to excavated and from excavated 

to built-up. If the period of one rotation is longer than the length of intervals, the changes 

from green space to excavated and from excavated to built-up will represent all the 

changes. If the period of one rotation is shorter than the length of intervals, changes will 

include not only the change from green space to excavated and from excavated to 

built-up, but also include the change directly from green space to built-up because more 

than one rotation may have been completed during this interval. For the first case 

(two-end tail changes), two tails in the histogram fully represent all types of urban 

changes. For the second case, the right tail also needs to include the second change from 

green space to built-up. Therefore, two intervals – 3 and 5 years were selected.  

 

The first interval is the 3-year interval from 2001 to 2004. The second one is the 5-year 

interval from 1994 to 1999. The test area is assigned to Vaughan where urban areas grew 

rapidly in the past decade. Figure 3.31 shows that urban changes in the 3-year interval are 

fully captured. The new developed class represents the change from excavated to built-up, 

which is the left tail in the histogram. The new excavated areas represent the change from 
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green space to excavated, which is the right tail in the histogram (Forsythe, 2002; 

Forsythe, 2004). These two types of changes include all changes that occurred between 

the two compared dates.  

 

Urban changes in the 5-year interval are not fully captured as shown in Figure 3.32. In 

addition to the new developed and new excavated, there are changes directly from the 

green space to the built-up (purple colour). This part of changes is the second change in 

the right tail of the histogram and needs to be categorised into new developed class. 

Therefore, the detected new developed is underestimated in this interval.  

 

Theoretically, it is possible to capture the second part of the changes. However, only two 

compared intervals are equal or longer than 5 years, i.e., interval from 1977 to 1985 and 

interval from 1994 to 1999. It is feasible to apply the two-end tail urban change detection 

for all intervals within 5 years whereas the other method is applied for intervals longer 

than 5 years. 

 

For intervals within 5 years, the two-end tail urban change detection can fully capture the 

two types of urban changes – the new developed and the new excavated except for the 

interval between 1990 and 1994 and theinterval between 1994 and 1999, in which the 

new developed change areas are underestimated. For intervals longer than 5 years from 

1977 to 1985, the new developed area is detected by using the post-classification method, 

i.e., subtracting two classified maps from two dates.  
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Figure 3.31 Fully captured urban change in 3-year interval from 2001 to 2004 

Image in upper left: 2001 imagery; Image in upper right: 2004 imagery;  

Image at bottom: captured changes: from green space to excavated (new excavated)  

and from the excavated to built-up area (new developed) 
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Figure 3.32 Partially captured urban change in 5-year interval from 1994 to 1999  

Images on the top are two years of original imagery; Images at bottom are  

Captured changes: new excavated and new developed. Area not captured: uncaptured.  
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3.2.5 Image Processing in ArcGIS 

In the northeast corner of the study area, the no data area is inconsistent between image 

dates. ArcGIS was used to process the images so that the calculations were consistent for 

all acquisition dates.  

3.3 Data Processing 

The finalized methodology (based on the experiments above) is shown in Figure 3.33  

 

Figure 3.33 Procedure of data processing 
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3.3.1 Enhancement 

Due to the varying resolutions and image characteristics, different enhancement strategies 

were implemented. They were:  

 Data 1985, 1987, 1990, 1994, 1999, and 2001 

 NDVI – Input: 3, 4; 

 Texture- Input: 2; Method: mean; FLSZ: 3x3 

 PCA- Input: 1, 2, 3, 4, 5, 6, 7; Output: PC1, PC2, and PC3 

 

 Data 1972, 1974, and 1977 

 NDVI- Input: 2, 4;  

 Texture- Input: 1; Method: mean; FLSZ: 3x3 

 PCA- Input: 1, 2, 3, 4; Output: PC1, PC2 

 Ratioing between MSS with TM  

 R1: TM 2 / MSS 1 

 R2: TM 3 / MSS 2 

 R3: TM 4 / MSS 3 

 R4: TM 5 / MSS 4 

 R5: TM NDVI / MSS NDVI 

 R6: TM texture / MSS texture 

 R7: TM PC1 / MSS PC1 

 R8: TM PC2 / MSS PC2 

 Data 2004 

 #NDVI – Input: 3, 4  

 #Texture- Input: 2; Method: mean; Size of window: 3x3 

 #PCA- Input: 1, 2, 3, 4, 5, 6, 7, (8 for 1999 image); Output: PC1, PC2, and 

PC3 

 B1/5: ∆B1 = B5 - B1 + 60 

 B2/5: ∆B2 = B5 - B2 + 60 

 B1/7: ∆B3 = B1 – B7 + 60 

 B3/7: ∆B4 = B3 – B7 + 60 

 

3.3.2 Classification 

Supervised classification with maximum likelihood method was used. Input channels 

included both the original bands and enhanced results.  
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 Input channels 

 Data 1985, 1987, 1990, 1994, 1999, and 2001 

 Original: 1, 2, 3, 4, 5, 6, 7 

 Enhancement: NDVI, texture, PC1, PC2, PC3 

 

 Data 1972, 1974, and 1977 

 Original: 1, 2, 3, 4 

 Enhancement: NDVI, texture, PC1, PC2, R1, R2, R3, R4, R5, R6, 

R7, R8 

 

 Data 2004 

 Original: 1, 2, 3, 4, 5, 6, 7 

 Enhancement: NDVI, texture, PC1, PC2, PC3, ∆B1, ∆B2, ∆B3, 

∆B4 

 

 Training sites 

Three types of land covers - urban, green, and water were trained. A visual control 

in a specific known area (such as river valley areas in the centre of Toronto) was 

necessary for consistency. This made the images more comparable. 

 

3.3.3 Image Differencing 

Figure 3.34 shows image differencing procedures. Band 2 was used to conduct the image 

differencing. By adding a 127 value to original differenced imagery, the pixel distribution 

is more easily identified. The initial selection of threshold values depends on the mean 

value as well as other distribution features in the histogram. Based on visual comparison 

between two dates of imagery, the threshold values for two tails were adjusted until all 

types of changes were captured with satisfactory results.  
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Figure 3.34 Image differencing 

 

The manipulation of the threshold was performed using a script in the PCI EASI 

Modelling module. To simplify and enhance the changes, a 50 value was added to right 

tail while a 50 value was given to left tail (Equation 3).  

 

if ( %D >= Tupper) then 

%N = %D + 50 

elseif (%D < Tlow) then 

%N = %D - 50 

else 

%D = Tmean 

endif 

 

 

 

(3) 
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Where:  

Tupper – threshold value for right tail, the change from green space to excavated 

Tlow – threshold value for left tail, the change from excavated to built-up 

Tmean – threshold value for middle part, the unchanged part 

%D – channel of original band 2 differencing by adding 127 

%N – new channel to store adjustment of change 

 

 

Table 3.8 lists all the values of thresholds for each year of data 

Table 3.8 Thresholds for image differencing in band 2 

Time Tmean Tlow Tupper 

1972_1974 128 110 150 

1974_1977 126 115 149 

1977_1985 128 110 154 

1985_1987 141 120 167 

1987_1990 135 123 155 

1990_1994 127 123 146 

1994_1999 149 143 166 

1999_2001 103 70 115 

2001_2004 159 80 250 

 

3.3.4 Masking with Urban Extent 

To detect the change that occurred within the urban extent, radiance change maps from 

image differencing procedures were masked with the urban extent map in ArcGIS. Before 

creating the urban change map, the urban extent map was produced by reclassifying 

satellite derived urban extent images with the classes – water, green space, and urban 

extent. The satellite derived radiance change maps were also reclassified into new 
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developed, unchanged, and new excavated.  

 

The reclassified values for both maps are given below:  

 

 Urban extent map 

 50 – water 

 180 – green space 

 250 – urban extent 

 

 

 Reclassified radiance change map 

 10 – new developed 

 1 - unchanged 

 30 – new excavated 

 

Urban change maps were produced using the raster calculator by adding the urban extent 

maps and the reclassified radiance change maps, which were subsequently reclassified 

map. The intermediate calculation and reclassification results are shown below:  

 

 Intermediate results and reclassifications 

 51 – unchanged water  water 

 60 – darker water  water 

 80 – brighter water  water 

 181- unchanged green space  green space 

 190 – ploughed to crop  green space 

 210 - green to ploughed  green space 

 251 – unchanged urban  developed urban 

 260 – excavated to built-up  new developed 

 280 – green space to excavated  new excavated 
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 Final urban change map: 

 50 – water 

 180 – green space 

 100 – new developed 

 200 – new excavated 

 250 – developed urban 

 

3.3.5 Accuracy Assessment 

To validate the urban change results derived from remote sensing, accuracy assessment 

was necessary. The urban change detection involved 10 different images from 1972 to 

2004 over a 32-year span. It was impossible to conduct the validation with field work. 

Therefore, the validation relied on Landsat imagery that was used to detect urban change, 

and supporting data, including historical land use and aerial photos. The dates of the 

supporting data are close to the Landsat imagery dates.  

 

Another consideration is the classification to be assessed. The results include urban extent 

maps, which are further combined with image differencing to differentiate new developed 

area, new excavated area, and unchanged developed area inside the urban. The new 

developed and new excavated are merged together with the developed for the accuracy 

assessment. This is because it is difficult to ensure enough random sampling sites inside 

these small areas and validate their accuracy independently.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Results 

The results include urban extent maps, urban change maps, statistics, and accuracy 

assessments for all dates from 1972 to 2004.  

 

4.1.1 Urban Extent 

 

1972 

Landsat MSS data in 1972 has a full coverage of the study area (Figure 4.1). Table 4.1 

shows the area statistics. Urban features cover 663.1 km2 accounting for 12.4% of the 

study area.  

 

The producer’s and user’s accuracy for water features for all dates was 100%, indicating 

that water area is fully and correctly classified. Therefore, urban and green space features 

were selected to assess the accuracy of derived urban extent maps with statistics - 

producer’s accuracy, user’s accuracy, and overall accuracy. These three statistics are 

adequate to assess how well the classification for each date performed. 

 

The results of accuracy assessment in Table 4.2 are very good. The overall accuracy is 

95.333%. It indicates that overall performance of classification for the urban extent maps 

from 1972 is very good. The producer’s accuracy for green space is 95.35% where it is 

81.82% for urban feature, indicating urban feature is not as fully captured as the green 

space feature, but it still achieved a very good accuracy level. The user’s accuracy for 

green space is 93.89% whereas it is 85.71% for the urban feature. It indicates that urban 
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feature is not as accurately captured as the green space feature in the classification. 

 
Figure 4.1 Derived urban extent map from 1972 Landsat MSS data 
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Table 4.1 Area statistics for urban extent map from 1972 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 663.1485165 

Green Space 2259.595838 

Water 2521.273547 

Unclassified 2.0842335 

 

Table 4.2 Accuracy statistics for urban extent map from 1972  

Overall Accuracy: 95.333% - 95% Confidence Interval (92.780% 97.887%) 

Overall Kappa Statistic: 0.924% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 81.82% 
(69.285% 

94.351%) 
85.71% 

(73.941% 

97.488%) 
0.8326 

Green Space 95.35% 
(91.327% 

99.371%) 
93.89% 

(89.411% 

98.375%) 
0.8929 

Water 100.00% 
(99.606% 

100.394%) 
100.00% 

(99.606% 

100.394%) 
1.0000 

 

1974 

Landsat MSS data in 1974 fully covered the study area (Figure 4.2). Table 4.3 shows that 

the unclassified area in 1974 is the same as in 1972. The water area remains almost the 

same. The areas that changed were green space and urban extent, the urban extent 

increased whereas the green space decreased.  

The results of accuracy assessment in Table 4.4 are better than results from 1972. The 

overall accuracy is 97.667%. It indicates that overall performance of classification for 

urban extent maps from 1974 is excellent. The producer’s accuracy for green space is 

99.19% whereas it is 88% for the urban feature. It shows that the green space is more 

fully captured than the urban feature, in which the green space is almost fully captured.  
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Figure 4.2 Derived urban extent map from 1974 Landsat MSS data  

 

However, the producer’s accuracy for urban feature is very close to 90%, indicating that 

identifying urban features was performed well. The user’s accuracy for green space is 

95.31% whereas it is 97.78% for the urban feature. It indicates that both green space and 

urban features achieved a great accuracy in categorizing features into correct classes. 
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However, the urban feature is more accurately captured than green space feature in the 

classification. 

Table 4.3 Area statistics for urban extent map from 1974 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 725.6828318 

Green Space 2196.196477 

Water 2522.138594 

Unclassified 2.0842335 

 

Table 4.4 Accuracy statistics for urban extent map from 1974  

Overall Accuracy: 97.667% - 95% Confidence Interval (95.792% 99.542%) 

Overall Kappa Statistic: 0.962% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 88.00% 
(77.993% 

98.007%) 
97.78% 

(92.360% 

103.196%) 
0.9733 

Green Space 99.19% 
(97.193% 

101.181%) 
95.31% 

(91.260% 

99.365%) 
0.9206 

Water 100.00% 
(99.606% 

100.394%) 
100.00% 

(99.606% 

100.394%) 
1.0000 

 

1977 

Landsat MSS data for 1977 fully covered the study area (Figure 4.3). Table 4.5 shows 

that the unclassified area and water area remain almost the same as 1972 and 1974. The 

urban extent continues to expand and green space to shrink.  

 

The results of accuracy assessment in Table 4.6 are very good. The overall accuracy is 

97.667%. It indicates that the overall performance of the classification is excellent. The 

producer’s accuracy for green space is 97.6% whereas it is 91.84% for the urban feature. 
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Figure 4.3 Derived urban extent map from 1977 Landsat MSS data 

 

It shows that the green space is more fully captured than the urban feature. However, 

notice that the producer’s accuracy for the urban feature is over 90%. It indicates that 

identifying the urban feature in the classification for urban extent achieved a high 

accuracy level. The user’s accuracy for green space is 97.6% whereas it  is 93.75% for the 
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urban feature, indicating that both green space and urban features achieved a great 

accuracy in categorizing features into correct classes. Relatively, the green space feature 

is more accurately captured than urban feature in classification for urban extent map from 

1977. 

  

Table 4.5 Area statistics for urban extent map from 1977 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 752.0484668 

Green Space 2177.008695 

Water 2514.96074 

Unclassified 2.0842335 

 

Table 4.6 Accuracy statistics for urban extent map from 1977  

Overall Accuracy: 97.667% - 95% Confidence Interval (95.792% 99.542%) 

Overall Kappa Statistic: 0.963% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 91.84% 
(83.150% 

100.524%) 
93.75% 

(85.860% 

101.640%) 
0.9253 

Green Space 97.60% 
(94.517% 

100.683%) 
97.60% 

(94.517% 

100.683%) 
0.9589 

Water 100.00% 
(99.603% 

100.397%) 
99.21% 

(97.282% 

101.144%) 
0.9864 

 

1985 

The 1985 TM data fully covered the study area (Figure 4.4). Table 4.7 shows that the 

urban extent continues to expand and green space to shrink.  

 

The results of accuracy assessment in Table 4.8 are very good. The overall accuracy is 
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Figure 4.4 Derived urban extent map from 1985 Landsat TM data 

 

 

97%. It indicates that the overall performance of the classification is very good. The 

producer’s accuracy for green space is 96.46% whereas it is 91.53% for urban features. 

This shows that green space is more fully captured than the urban feature. However, the 

producer’s accuracy for the urban feature is over 90%. The user’s accuracy for green 

space is 95.61% whereas it is 93.1% for urban features, indicating that both green space 
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and urban features achieved a great accuracy in class categorization. Relatively, the green 

space feature is more accurately captured than urban features. 

 

Table 4.7 Area statistics for urban extent map from 1985 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 861.9881288 

Green Space 2066.571936 

Water 2515.457837 

Unclassified 2.0842335 

 

Table 4.8 Accuracy statistics for urban extent map from 1985  

Overall Accuracy: 97.000% - 95% Confidence Interval (94.903% 99.097%) 

Overall Kappa Statistic: 0.953% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 91.53% 
(83.571% 

99.479%) 
93.10% 

(85.720% 

100.487%) 
0.9142 

Green Space 96.46% 
(92.611% 

100.310%) 
95.61% 

(91.416% 

99.812%) 
0.9296 

Water 100.00% 
(99.609% 

100.391%) 
100.00% 

(99.609% 

100.391%) 
1.0000 

 

1987 

The 1987 TM data did not fully cover the study area (Figure 4.5). There is not very much 

urban development in NE corner of the image where there are no data. Therefore to make 

the mapping representation consistent between full coverage images (1972, 1974, 1977, 

1985, 2004) and partial coverage images (1987, 1990, 1994, 1999, 2001), this area was 

filled with green space in ArcGIS. This means that green space inside the study area is a 
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Figure 4.5 Derived urban extent map from 1987 Landsat TM data 

 

 

little overestimated whereas the urban extent is a little bit underestimated. The areas of 

green space and urban extent in dates with the NE no data corner in tables are represented 

by *. Table 4.9 shows the area statistics for urban extent map from 1987. In the accuracy 

assessment, the NE corner is just green space.  
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The results of accuracy assessment in Table 4.10 are very good. The overall accuracy is 

97.667%, indicating overall performance of classification for urban extent maps from 

1987 is excellent. The producer’s accuracy for green space is 96.33% whereas it is 

95.31% for urban features. It shows that both green space and urban features are near to 

be fully captured. The producer’s accuracy for urban features is over 95%, which is a 

great accuracy level. The user’s accuracy for green space is 97.22% whereas it is 93.85% 

for urban features, indicating that both green space and urban features achieved a great 

accuracy in categorizing features into correct classes. Relatively, the green space feature 

is more accurately captured than urban features. 

 

 

Table 4.9 Area statistics for urban extent map from 1987 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 987.5879708* 

Green Space 1934.209301* 

Water 2522.220631 

Unclassified 2.0842335 

 

Table 4.10 Accuracy statistics for urban extent map from 1987  

Overall Accuracy: 97.667% - 95% Confidence Interval (95.792% 99.542%) 

Overall Kappa Statistic: 0.964% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 95.31% 
(89.353% 

101.272%) 
93.85% 

(87.235% 

100.458%) 
0.9218 

Green Space 96.33% 
(92.342% 

100.319%) 
97.22% 

(93.660% 

100.785%) 
0.9564 

Water 100.00% 
(99.606% 

100.394%) 
100.00% 

(99.606% 

100.394%) 
1.0000 
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1990 

 

The 1990 TM data did not fully cover the study area (Figure 4.6). The area of no data in 

the NE corner is consistent with the 1987 TM data. Table 4.11 shows the area statistics.  

 

The results of accuracy assessment in Table 4.12 are very good. The overall accuracy of 

98.333% indicates the overall performance of the classification is excellent. The 

producer’s accuracy for green space is 99.06% whereas it is 94.03% for urban features, 

indicating that green space is almost fully captured and urban features are also very well 

captured. The producer’s accuracy for urban features is near to 95%. The user’s accuracy 

for green space is 96.33% whereas it is 98.44% for urban features, indicating that both 

green space and urban feature achieved great accuracy. Urban features are more 

accurately captured than green space features. 
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Figure 4.6 Derived urban extent map from 1990 Landsat TM data  

Table 4.11 Area statistics for urban extent map from 1990 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 1045.738573* 

Green Space 1882.823929* 

Water 2515.455401 

Unclassified 2.0842335 
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Table 4.12 Accuracy statistics for urban extent map from 1990  

Overall Accuracy: 98.333% - 95% Confidence Interval (96.718% 99.949%) 

Overall Kappa Statistic: 0.974% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 94.03% 
(87.610% 

100.450%) 
98.44% 

(94.618% 

102.257%) 
0.9799 

Green Space 99.06% 
(96.745% 

101.369%) 
96.33% 

(92.342% 

100.319%) 
0.9433 

Water 100.00% 
(99.606% 

100.394%) 
100.00% 

(99.606% 

100.394%) 
1.0000 

 

 

 

1994 

The 1994 TM data did not fully cover the study area (Figure 4.7). The area of no data in 

the NE corner is smaller than that in 1987 and 1990. Table 4.13 shows the area statistics.  

 

The results of accuracy assessment in Table 4.14 are very good. The overall accuracy of 

97.667% indicates an excellent overall performance. The producer’s accuracy for green 

space is 98.1% whereas it is 92.54% for urban features, indicating that green space is 

almost fully captured and urban features are very well captured. The user’s accuracy for 

green space is 95.37% whereas it is 96.88% for urban features, indicating that both green 

space and urban feature achieved great accuracy. 
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Figure 4.7 Derived urban extent map from 1994 Landsat TM data 

Table 4.13 Area statistics for urban extent map from 1994 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 1072.757257* 

Green Space 1847.656753* 

Water 2523.603893 

Unclassified 2.0842335 
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Table 4.14 Accuracy statistics for urban extent map from 1994  

Overall Accuracy: 97.667% - 95% Confidence Interval (95.792% 99.542%) 

Overall Kappa Statistic: 0.964% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 92.54% 
(85.499% 

99.576%) 
96.88% 

(91.831% 

101.919%) 
0.9598 

Green Space 98.10% 
(95.004% 

101.186%) 
95.37% 

(90.944% 

99.796%) 
0.9288 

Water 100.00% 
(99.609% 

100.391%) 
100.00% 

(99.609% 

100.391%) 
1.0000 

 

1999 

The 1999 ETM+ data did not fully cover the study area (Figure 4.8). The area of no data 

in NE corner is smaller than that in 1987 and 1990 but larger than that in 1994. Table 4.15 

shows the area statistics. 

 

The results of the accuracy assessment in Table 4.16 are excellent. The overall accuracy 

of 97.667% indicates an excellent overall performance. The producer’s accuracy for 

green space is 96% whereas it is 95.83% for urban features, indicating that both green 

space and urban features achieved a high accuracy level in terms of being fully captured. 

The user’s accuracy for green space is 96.97% whereas it is 94.52% for urban features, 

also showing that both green space and urban features achieved great accuracy. 
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Figure 4.8 Derived urban extent map from 1999 Landsat ETM+ data 

Table 4.15 Area statistics for urban extent map from 1999 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 1177.7625* 

Green Space 1749.519896* 

Water 2516.735507 

Unclassified 2.0842335 
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Table 4.16 Accuracy statistics for urban extent map from 1999  

Overall Accuracy: 97.667% - 95% Confidence Interval (95.792% 99.542%) 

Overall Kappa Statistic: 0.964% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban Extent 95.83% 
(90.523% 

101.144%) 
94.52% 

(88.615% 

100.426%) 
0.9279 

Green Space 96.00% 
(91.659% 

100.341%) 
96.97% 

(93.088% 

100.852%) 
0.9545 

Water 100.00% 
(99.609% 

100.391%) 
100.00% 

(99.609% 

100.391%) 
1.0000 

 

2001 

The 2001 TM data did not fully cover the study area (Figure 4.9). The urban extent and 

green space in 2001 remained almost the same as those in 1999. This is because the area 

of no data in NE corner is larger than that in 1999 and the urban extent is a little bit 

underestimated. Table 4.17 shows the area statistics. 

 

The results of the accuracy assessment in Table 4.18 are very good. The overall accuracy 

of 97% indicates a very good overall performance. The producer’s accuracy for green 

space is 97.87% whereas it is 91.14% for urban features, indicating that green space is 

more fully captured than urban features. The producer’s accuracy for urban features in 

classification is over 90%. The user’s accuracy for green space is 92.93% whereas it is 

97.3% for urban features, indicating that urban features are not as fully captured as green 

space features. 
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Figure 4.9 Derived urban extent map from 2001 Landsat TM data 

Table 4.17 Area statistics for urban extent map from 2001 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 1178.468345* 

Green Space 1749.445981* 

Water 2516.103576 

Unclassified 2.0842335 
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Table 4.18 Accuracy statistics for urban extent map from 2001  

Overall Accuracy: 97.000% - 95% Confidence Interval (94.903% 99.097%) 

Overall Kappa Statistic: 0.954% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban  91.14% 
(84.240% 

98.039%) 
97.30% 

(92.927% 

101.668%) 
0.9633 

Green Space 97.87% 
(94.423% 

101.322%) 
92.93% 

(87.375% 

98.484%) 
0.8970 

Water 100.00% 
(99.606% 

100.394%) 
100.00% 

(99.606% 

100.394%) 
1.0000 

 

2004 

The 2004 TM data fully covered the study area (Figure 4.10). Table 4.19 shows that area 

changes occurred in urban extent and green space. The green space shrank from 2259.6 

km2, (accounting for 41.5% of the total study area in 1972) to 1603.8 km2 (accounting for 

29.5% in 2004). The urban extent expanded from 663.1 km2, (accounting for 12.4% of 

total study area in 1972) to 1327.6 km2 (accounting for 24.4% of total study area in 

2004).  

 

The results of the accuracy assessment in Table 4.20 are very good. The overall accuracy 

of 97.333% indicates a very good overall performance. The producer’s accuracy for 

green space is 98.88% whereas it is 91.55% for urban features, indicating that green 

space is more fully captured than urban features. The producer’s accuracy for urban 

features is over 91%. The user’s accuracy for green space is 92.63% whereas it is 98.49% 

for urban features, indicating that although urban features are not as fully captured as 

green space features, they are more accurately captured. The user’s accuracy for urban 

features is the highest among all dates of urban extent maps. 
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Figure 4.10 Derived urban extent map from 2004 Landsat TM data 

Table 4.19 Area statistics for urban extent map from 2004 

Classes Area (km2) 

Study Area 5444.017902 

Urban Extent 1327.635056 

Green Space 1603.764581 

Water 2512.618265 

Unclassified 2.0842335 
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Table 4.20 Accuracy statistics for urban extent map from 2004 

Overall Accuracy: 97.333% - 95% Confidence Interval( 95.344% 99.323%) 

Overall Kappa Statistic: 0.958% - Overall Kappa Variance: 0.000% 

Class Name 
Producer’s 

Accuracy 

95% 

Confidence 

User’s 

Accuracy 

95% 

Confidence 

Kappa 

Statistics 

Urban 91.55% 
(84.375% 

101.038%) 
98.49% 

(94.780% 

100.360%) 
0.9802 

Green Space 98.88% 
(96.125% 

101.628%) 
92.63% 

(86.852% 

98.412%) 
0.8952 

Water 99. 29% 
(97.534% 

101.038%) 
100.00% 

(99.640% 

100.360%) 
1.0000 

 

Table 4.21 is a collection of accuracy statistics for comparison purpose between dates 

from 1972 to 2004, in which producer’s accuracy, user’s accuracy, and overall accuracy 

are provided. 

 

Table 4.21 Accuracy comparison for all dates 

Year 
Producer’s Accuracy User’s Accuracy Overall Accuracy 

Urban (%) Green (%) Urban (%) Green (%) (%) 

1972 81.82 95.35 85.71 93.89 95.33 

1974 88.00 99.19 97.78 95.31 97.67 

1977 91.84 97.60 93.75 97.60 97.67 

1985 91.53 96.46 93.10 95.61 97.00 

1987 95.31 96.33 93.85 97.22 97.67 

1990 94.03 99.06 98.44 96.33 98.33 

1994 92.54 98.10 96.88 95.37 97.67 

1999 95.83 96.00 94.52 96.97 97.67 

2001 91.14 97.87 97.30 92.93 97.00 

2004 91.55 98.88 98.49 92.63 97.33 

 

From the accuracy levels for all dates, the following observations can be made: 

 

1) The overall accuracy of the urban extent maps is 97% or better for all dates but 1972, 

which is also above 95%. This indicates that the overall performance from all dates is 
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very good. 

2) The producer’s accuracy for green space is better than that for urban features for all 

dates. It shows that urban features are not as fully captured as green space features. 

3) The producer’s accuracy for urban features for all dates is above 91% except for two 

dates of MSS data – 1972 and 1974, which are 81.82% and 88.00% respectively. The 

results indicate that identifying urban features performed very well, particularly for 

the classification of MSS data, in which the producer’s accuracy of the 1974 

classification – 88.00% is very close to the average TM level. The producer’s 

accuracy for the 1977 MSS data – 91.84% is even a little bit higher than some dates 

of TM data. 

4) The user’s accuracy represents how accurate urban and green space features are 

captured. Different from producer’s accuracy, it did not show the unanimous 

difference between green space and urban features. The lowest user’s accuracy for 

urban is 85.71%, which is from the 1972 MSS data. But all other dates are above 

93%. This indicates the categorised urban class for all dates well represents the 

ground truth urban feature. 

5) The greater spectral and spatial resolution of the ETM+ and TM data allowed for 

improved performance in capturing urban features when compared to MSS data. 

However, the gap between MSS data and TM/ETM+ data is reduced by 

enhancements, in which MSS was resampled into the same spatial resolution with 

TM. 
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4.1.2 Urban Change 

 

1972-1974 

Urban change from 1972 to 1974 (Figure 4.11) is produced from the subtraction of band 

2 between these two dates, then masked by the 1974 urban extent map. These two dates 

of imagery fully covered the study area, therefore, the changes between these two dates 

inside the study area are fully detected.  

 

Table 4.22 shows the area statistics. The developed class in the urban change map is the 

unchanged urban from 1972 to 1974. The new excavated class is the area changed from 

green space in 1972 to excavated in 1974. The new developed class is the area changed 

from excavated in 1972 to built-up in 1974. Annual growth is the result calculated from 

the new developed divided by the length of interval between two dates. The urban change 

is fully detected because the length of interval is shorter than 3 years. 
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Figure 4.11 Detected urban change map from 1972 to 1974 
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Table 4.22 Area statistics for urban change (1972-1974) 

Class Names Area (km2) 

Water 2522.138594 

Greenspace 2196.196477 

Developed 603.0322695 

New Excavated 87.00415875 

New Developed 35.6464035 

Annual Growth 17.82320175 

 

 

1974-1977 

Urban change from 1974 to 1977 (Figure 4.12) is produced from the subtraction of band 

2 between these two dates, then masked by the 1977 urban extent map. These two dates 

of imagery fully cover the study area, therefore, the changes between these two dates 

inside the study area are fully detected.  

 

Table 4.23 shows the area statistics. Classes and annual growth calculation in urban 

change map from 1974 to 1977 are the same as the previous urban change map from 

1972 to 1974. The urban change is fully detected because the length of interval is 3 years. 
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Figure 4.12 Detected urban change map from 1974 to 1977 
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Table 4.23 Area statistics for urban change (1974-1977) 

Class Names Area (km2) 

Water 2514.96074 

Greenspace 2177.008695 

Developed 652.402449 

New Excavated 51.483654 

New Developed 48.16236375 

Annual Growth 16.05412125 

 

 

 

1977-1985 

Urban change from 1977 to 1985 (Figure 4.13) is produced from the subtraction of band 

2 between these two dates, then masked by the 1985 urban extent map. These two dates 

of imagery fully covered the study area, therefore, the changes between these two dates 

inside the study area are fully detected.  

 

Table 4.24 shows the area statistics. Classes in urban change map from 1977 to 1985 are 

the same as the previous urban change maps. However, the calculation of annual growth 

from 1977 to 1985 is different from previous calculations due to the long interval 

between two dates. Annual growth is not directly derived from the new developed, 

instead from subtraction of developed urban areas between two dates.  
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Figure 4.13 Detected urban change map from 1977 to 1985 
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Table 4.24 Area statistics for urban change (1977-1985) 

Class Names Area (km2) 

Water 2515.457837 

Greenspace 2066.571936 

Developed 774.7719728 

New Excavated 64.5560055 

New Developed 22.6601505 

Annual Growth 12.10841381* 

 

The calculation is as follows: 

ΔG = (N2 + D2 – N1 – D1) / 8                                      (4) 

 

Where 

ΔG - annual growth in km2 

N1 – new developed area in 1977 

N2 – new developed area in 1985 

D1 – developed area in 1977 

D2 – developed area in 1985 

 

The reason is the long interval included more than one urban development rotation. The 

detected new developed can only partially account for the urban change between these 

two dates. The subtraction between two dates of developed and new developed can more 

accurately account for the urban change over a long interval of time. 

1985-1987 

Urban change from 1985 to 1987 (Figure 4.14) is produced from the subtraction of band 

2 between these two dates, then masked by the 1987 urban extent map. The 1987 imagery 

contains no data in the NE corner, in which some urban missed. Thus, urban change that 

occurred in the NE corner is not detected. 
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Figure 4.14 Detected urban change map from 1985 to 1987 
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Table 4.25 shows the area statistics. Classes and annual growth calculation from 1985 to 

1987 are the same as the previous urban change maps from 1972 to 1974. The urban 

change is fully detected because the length of interval is shorter than 3 years. 

 

Table 4.25 Area statistics for urban change (1985-1987) 

Class Names Area (km2) 

Water 2522.220631 

Greenspace 1934.213362 

Developed 905.8910535 

New Excavated 54.6952905 

New Developed 26.9975655 

Annual Growth 13.49878275 

 

 

1987-1990 

Urban change from 1987 to 1990 (Figure 4.15) is produced from the subtraction of band 

2 between these two dates, then masked by the 1990 urban extent map. Both 1987 and 

1990 imagery have no data in the NE corner, thus urban change that occurred in the NE 

corner between the two dates is not detected.  
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Figure 4.15 Detected urban change map from 1987 to 1990 
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Table 4.26 shows the area statistics. Classes and annual growth calculations are the same 

as the previous urban change maps. The detected new excavated from 1987 to 1990 is 

overestimated and some unchanged urban areas are also included. For this reason the 

developed urban area 888.9 km2 is smaller than 905.9 km2 from the previous date. 

However, the new developed is appropriately detected. The urban change is fully detected 

because the length of interval is 3 years. 

 

Table 4.26 Area statistics for urban change (1987-1990) 

Class Names Area (km2) 

Water 2515.455401 

Greenspace 1882.823929 

Developed 888.8890365 

New Excavated 105.8865345 

New Developed 50.96300175 

Annual Growth 16.98766725 

 

 

1990-1994 

Urban change from 1990 to 1994 (Figure 4.16) is produced from the subtraction of band 

2 between these two dates, then masked by the 1994 urban extent map. Both 1990 and 

1994 imagery have no data in the NE corner, thus urban change that occurred in the NE 

corner between the two dates is not detected.  
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Figure 4.16 Detected urban change map from 1990 to 1994 
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Table 4.27 shows the area statistics. Classes and annual growth calculations are the same 

as the previous urban change maps. New developed area and derived annual growth are 

probably underestimated because the interval (4 years) is longer than 3 years. 

 

Table 4.27 Area statistics for urban change (1990-1994) 

Class Names Area (km2) 

Water 2523.603893 

Greenspace 1853.25478 

Developed 970.4105078 

New Excavated 38.786562 

New Developed 57.96216* 

Annual Growth 14.49054 

 

 

1994-1999 

Urban change from 1994 to 1999 (Figure 4.17) is produced from the subtraction of band 

2 between these two dates, then masked by the 1999 urban extent map. Both 1994 and 

1999 imagery have no data in the NE corner, thus urban change that occurred in the NE 

corner between the two dates is not detected.  
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Figure 4.17 Detected urban change map from 1994 to 1999 
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Table 4.28 shows the area statistics. Classes and annual growth calculations are the same 

as the previous urban change maps. New developed area and derived annual growth are 

underestimated because the interval (5 years) is longer than 3 years. 

 

Table 4.28 Area statistics for urban change (1994-1999) 

Class Names Area (km2) 

Water 2516.735507 

Greenspace 1766.300981 

Developed 1029.459458 

New Excavated 71.04019725 

New Developed 60.4817595* 

Annual Growth 12.0963519 

 

 

1999-2001 

Urban change from 1999 to 2001 (Figure 4.18) is produced from the subtraction of band 

2 between these two dates, then masked by the 2001 urban extent map. Both 1999 and 

2001 imagery have no data in the NE corner, thus urban change that occurred in the NE 

corner between the two dates is not detected.  
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Figure 4.18 Detected urban change map from 1999 to 2001 
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Table 4.29 shows the area statistics. Classes and annual growth calculations are the same 

as the previous urban change maps. The urban change is fully detected because the length 

of interval is shorter than 3 years.  

 

Table 4.29 Area statistics for urban change (1999-2001) 

Class Names Area (km2) 

Water 2516.103576 

Greenspace 1749.471161 

Developed 1109.538374 

New Excavated 45.76135275 

New Developed 23.14343925 

Annual Growth 11.57171963 

 

 

2001-2004 

Urban change from 2001 to 2004 (Figure 4.19) is produced from the subtraction of band 

2 between these two dates, then masked by the 2004 urban extent map. The 2001 image 

has no data in the NE corner, thus urban change that occurred in the NE corner between 

the two dates is not detected.  
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Figure 4.19 Detected urban change map from 2001 to 2004 
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Table 4.30 shows the area statistics. Classes and annual growth calculation in urban 

change map from 2001 to 2004 are the same as the previous urban change map from 

1972 to 1974. The urban change is fully detected because the length of interval is 3 years. 

 

Table 4.30 Area statistics for urban change (2001- 2004) 

Class Names Area (km2) 

Water 2512.618265 

Greenspace 1622.650843 

Developed 1225.019635 

New Excavated 47.79064424 

New Developed 35.938514 

Annual Growth 11.97950467 

 

 

4.2 Discussion 

4.2.1 Growth 

In order to analyse the total urban change from 1972 to 2004, two satellite derived urban 

extent maps from 1972 and 2004 are selected. The imagery of these two dates has a full 

coverage with the study area, thus the urban feature in the maps is fully captured without 

any no data areas. Figure 4.20 is the map representing the total urban change over the 

GTA from 1972 to 2004. Urban extent in 1972 is represented in black colour. The total 

urban growth from 1972 to 2004 is represented in white.  
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Figure 4.20 Total urban change from 1972 to 2004 over the GTA 
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By visual comparison, it is clear that the urban area has expanded along with its edge in 

three directions – west, northwest, and northeast while it was limited by Lake Ontario on 

the south side. The amount of urban growth over the GTA from 1972 to 2004 is 

remarkable. The urban area over the GTA in the study area in 1972 was 663.1 km2 (Table 

4.1) whereas it was 1327.6 km2 by 2004 (Table 4.19). The total urban growth between 

these two dates is 664.5 km2, which is nearly the urban area in 1972. Annual urban 

growth between these two dates is 20.8 km2 (i.e., 664.5/32).  

 

However, the urban growth has not evenly occurred over this 32-year period of time. It is 

necessary to check the difference between different historical times. Besides, urban extent 

in urban extent maps includes three different components – developed area, new 

excavated area, and new developed area. Developed area is the unchanged part between 

two compared dates. 

 

 

New excavated area is converted from green space, but not built-up yet. Therefore, the 

new developed area converted from the excavated area to the built-up area is of more 

concern. Table 4.31 summarizes information from Table 4.22 to Table 4.30 for 

comparison purposes. The annual growth is produced from the new developed area by 

dividing with the length of an interval. In order to make the result more straightforward, a 

bar graph was also produced (Figure 4.21). 
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Table 4.31 Annual growth statistics for all available dates 

Intervals 
Developed 

(km2) 

New 

Developed 

(km2) 

New 

Excavated 

(km2) 

Annual 

Growth 

(km2) 

1972-1974 603.0323 35.6464035 87.00415875 17.8 

1974-1977 652.4024 48.16236375 51.483654 16.1 

1977-1985 774.772 22.6601505 64.5560055 12.1 

1985-1987 905.8911 26.9975655 54.6952905 13.5 

1987-1990 888.889 50.96300175 105.8865345 16.9 

1990-1994 970.4105 57.96216 38.786562 14.5 

1994-1999 1029.459 60.4817595 71.04019725 12.1 

1999-2001 1109.538 23.14343925 45.76135275 11.6 

2001-2004 1225.02 35.938514 47.79064424 11.9 
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Figure 4.21 Yearly new developed change over different historical periods 

 

The results from Table 4.31 and Figure 4.21 show the growth rates throughout the 

different historical periods from 1972 to 2004. The first peak of urban growth occurred 

between 1972 and 1977, in which annual growth rate is 17.82 km2 between 1972 and 
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1974, 16.05 km2 between 1974 and 1977. The second peak of new urban development 

occurred in the end of 1980’s, i.e., between 1987 and 1990, in which yearly urban growth 

is 16.9 km2. From 1977 to 1985, the speed of new urban development slowed down, in 

which the yearly new developed amount went from 16.05 km2 in 1977 to 12.11 km2 in 

1985. The second slow period for new urban development occurred from 1990 to 1994 

(16.99 km2 in 1990 to 12.10 km2 in 1994). After 1994, i.e. during the last 10 years, the 

pace of new urban development was the lowest among compared dates. The yearly 

growth was 12.1 km2 between 1994 and 1999, 11.6 km2 between 1999 and 2001, and 

11.9 km2 between 2001 and 2004. The slow period in new urban development between 

1990 and 1994 can in part be explained by the impact of a economic recession that 

occurred in this period of time. The reason slow growth between 1977 and 1985 is not 

clear because of the longer time period (8 years).  

 

The overall yearly new development was 14.1 km2. The new developed growth rate from 

1999 to 2004 – 11.6 km2 and 11.9 km2 are very close to the result captured by Forsythe 

(2004) with pansharpening enhancement from 1999 to 2002 – 10.6 km2 however the 

study areas do not have the same coverage.  

 

4.2.2 Places of Growth 

Urban growth over the GTA is uneven. If it is divided into municipalities, the distribution 

of the urban growth becomes clear. Figure 4.22 shows the same area as Figure 4.20, but 

adds the municipal boundaries. By raster manipulation in ArcGIS, the amount of growth 

from 1972 to 2004 is calculated for each municipality. Table 4.32 shows the uneven 
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contribution of municipalities to urban growth in the study area. In Table 4.32, ten 

municipalities related to the majority of contiguous urban areas are selected. They are 

Toronto, Burlington, Oakville, Mississauga, Brampton, Vaughan, Richmond Hill, 

Markham, Pickering, and Ajax. Urban areas for Milton, Halton Hills, Caledon, and King 

in study area are not calculated.  

 

The difference of municipal urban extents between 1972 and 2004, is strongly illustrated 

in Figure 4.22. There is an uneven distribution of urban changes in the study area. 

  

Mississauga was the largest contributor to the urban change between 1972 and 2004, 

accounting for 21.29% of total urban change although its municipal area is only about 

half of the City of Toronto. Toronto accounted for 16.07% of total urban change. Notice 

that the Toronto is the largest municipality among all municipalities with the contiguous 

urban area. The next largest contributors were Brampton (accounting for 14.91%), 

Vaughan (13.62%), and Markham (10.02%). Ajax and Pickering accounted for the 

smallest proportion of total urban change in the study area, at 3.37% and 3.93% 

respectively although this may have been influenced by the missing data in the NE corner 

of the study area.  
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Figure 4.22 Urban growth in different municipal areas 
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Table 4.32 Urban change in municipalities over the GTA from 1972 to 2004 

Municipalities 

Municipal 

Area 

(km2) 

1972 2004 Urban 

Growth 

(km2) 

Percentage 

of Total 

Change 

(%) 

Annual 

Growth 

(km2) 
Urban Urbanized % Urban Urbanized % 

Toronto 647.40 382.50 59.08 479.58 74.08 97.08 16.07 3.0 

Mississauga 291.60 86.60 29.70 215.17 73.79 128.56 21.29 4.0 

Brampton 268.80 34.39 12.79 124.46 46.30 90.07 14.91 2.8 

Vaughan 275.00 27.37 9.95 109.63 39.86 82.26 13.62 2.5 

Richmond Hill 101.70 9.45 9.29 43.27 42.55 33.82 5.60 1.1 

Markham 213.70 25.64 12.00 86.16 40.32 60.52 10.02 1.9 

Burlington 191.70 34.28 17.88 63.07 32.90 28.79 4.77 0.9 

Oakville 153.10 26.39 17.24 65.15 42.56 38.76 6.42 1.2 

Pickering 234.50 9.22 3.93 32.95 14.05 23.73 3.93 0.7 

Ajax 67.28 6.00 8.93 26.36 39.18 20.36 3.37 0.6 

Total - 641.85 - 1245.80 - 603.95 100.00 - 
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If municipalities are categorized into upper level regions, Peel region accounted for the 

highest proportion of total urban change (36.20%) even though Newmarket has not been 

included in this study. York is the second accounting for 29.24% of total urban change. 

Toronto only accounts for 16% of total urban change. Halton region is the least. Table 

4.33 shows urban change distributions in different upper level regions. Urban change data 

in Table 4.33 did not include Milton, Halton Hills, Caledon, and King in the study area.  

 

Table 4.33 Urban change distributions in upper level regions 

Region 
Urban Change 

(km2) 

Percentage of 

Total Change (%) 

Annual Growth 

(km2) 

Toronto 97.08 16.07 3.0 

Peel 218.63 36.20 6.8 

York 176.6 29.24 5.5 

Halton 67.55 11.18 2.1 

Durham 44.09 7.30 1.4 

Total 603.95 100.00 - 

 

4.2.3 Spatial Patterns of Growth 

Apart from the uneven pace of growth, the spatial pattern of urban development also 

shows an interesting evolution from 1972 to 2004. Figure 4.23 below shows the spatial 

evolution of urban growth from 1972 to 2004. It was created from the satellite derived 

urban extent maps for 1972 to 2004. The black colour in map represents the urban extent 

in 1972. Dark brown represents urban growth from 1972 to 1985. Pink represents urban 

growth from 1985 to 1994. Yellow represents urban growth from 1994 to 2004. The most 

active municipalities (Mississauga and Brampton) were selected to show the course of 

urban development. 
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Figure 4.23 Spatial pattern evolution of urban from 1972 to 2004 

 

In 1972, Mississauga consisted of areas in the old Mississauga town along with the 

lakeshore, Streetville in the west corner, and area to the southwest of Lester B. Pearson 

International Airport. Prior to the 1985, the urban area mainly expanded outward. This 

type of development can also be seen in Brampton. It developed along with its four urban 

edges, particularly to the northwest and northeast. The urban edge adjacent to the airport 

and Mississauga was more stable. From 1985 to 1994, urban expansion mainly tended to 
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backfill the non-developed area between developed urban areas. After 1994, urban 

expansion tended to the outward type of expansion again – urban sprawl along the urban 

edge. This tendency occurred not only in Mississauga, but also in Brampton. The outward 

expansion in Brampton in the last 10 years is more remarkable than that in Mississauga. 

The types of urban expansion indicate two directions – outward sprawl and backfilling. 

More interesting is that two urban expansions seemed to occur in different periods of 

times. The middle period from 1985 to 1994 with much backfill has a higher rate of new 

urban development. The periods before 1985 and after 1994 (with tendency of outward 

urban expansion) coincide with periods with lower rates of new urban development. If 

this is not by chance, it can be concluded that when urban areas tend to outward sprawl, 

the real new urban development – from excavated area to built-up area is slowed down. 

In other words, the higher rates of new urban development usually coincided with large 

amounts of backfilling. However, this conclusion cannot be validated. A truly spatial 

pattern of urban growth requires further study.  

 

4.2.4 Urban Growth and Population 

To explore the associated drivers for urban growth, population data were selected because 

population is a very active factor in urban development. Population data in census years 

close to the available Landsat data acquisition dates were obtained from Statistics Canada. 

Census population is showed in Table 4.33. Seven years of population data were analyzed 

from 1971 to 2001 (Statistic Canada, 2001) and the 2004 GTA population was estimated 

based on the 2003 GTA population (Statistics Canada, 2001 and Ontario Ministry of 

Finance, 2004). The percentage of population change between two adjacent census dates 
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was calculated by subtracting population in adjacent census dates divided by the 

population of earlier census date.  

Table 4.34 Population change from 1971 to 2004 over the GTA  

Year Population 
Intervals between 

Two Dates 

Population Change 

(%) 1971 2,900,000 

1976 3,217,401 1971 - 1976 10.94 

1981 3,417,701 1976 – 1981 6.23 

1986 3,733,085 1981 – 1986 9.23 

1991 4,235,755 1986 – 1991 13.47 

1996 4,628,883 1991 – 1996 9.28 

2001 5,081,826 1996 – 2001 9.79 

2004 5,547,068* 2001- 2004 9.16 

 

The census dates do not completely coincide with the Landsat imagery dates. In order to 

associate urban change with census population change, the amount yearly new 

development was selected to correspond with the nearest percentage of population 

change. During the census interval from 1971 to 1976, the closest urban changes are 

change from 1972 to 1974 and change from 1974 to 1977. The yearly new developed 

(annual growth) is calculated from total amount of new developed from these two 

intervals divided by the period from 1972 to 1977. From 1976 to 1986, the urban change 

interval from 1977 to 1985 is closest to the census dates. Yearly new development from 

1977 to 1985 was associated with both the census interval from 1976 to 1981 and the 

census interval from 1981 to 1986. The association between population change and 

yearly new developed is shown in Table 4.35. 



 

 134 

Table 4.35 Population changes vs. yearly new developed 

Population 

Interval 

Yearly Population 

Change 

Urban Change 

Interval 

Yearly New 

Developed (km2) 

1971 – 1976 10.94 1972 – 1977 16.76 

1976 - 1981 6.23 1977 - 1985 12.11 

1981 – 1986 9.23 1977 – 1985 12.11 

1986 – 1991 13.47 1985 – 1990 15.59 

1991 – 1996 9.28 1990 – 1994 14.49 

1996 – 2001 9.79 1994 – 2001 11.95 

2001- 2004 9.16 2001 - 2004 11.98 

 

A bar graph based on Table 4.35 was also created (Figure 4.24), in which the blue bar 

represents the yearly new developed and the brown bar the percentage of population 

change over different historical times.  

 

Figure 4.24 Urban change growth rate and the population change 
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The bar graph in Figure 4.24 shows the yearly new developed in different census 

intervals corresponds with the percentage of population change very well. The highest 

peak in population growth in the GTA occurred in the census interval from 1986 to 1991 

with a growth rate of 13.47%. A secondary peak occurred in census interval from 1971 to 

1976. These two population growth peaks are consistent with the peaks of yearly new 

development that occurred in interval from 1971 to 1976 and interval from 1986 to 1991. 

The slowest population growth in the GTA occurred in census interval from 1976 to 1981 

with a rate of 6.23%, which is coincident with the low new development rate that 

occurred during this interval. Since 1991, the population change is consistent with the 

low rates of yearly new development over this time period. This indicates that population 

is an important driver for new urban development.  
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CHAPTER 5: CONCLUSION 

5.1 Findings 

The results of this research can be categorized as follows:  

1) The GTA experienced a series of new urban development periods with varied growth 

rates. Two peak new development periods occurred between 1972 and 1977 and 

between 1987 and 1990. Two periods with lower new urban development rates 

occurred from 1977 to 1985 and from 1990 to 1994. Over the last 10 years, a 

relatively low and stable rate in new urban development has occurred.  

2) Peak yearly new urban development periods seemed to be synchronized with the 

time of urban development backfill whereas the slower growth periods seem 

synchronized with times of outward urban expansion and sprawl. The period of 

outward new urban development and expansion appeared to be the period of urban 

sprawl  

3) Urban development demonstrated a distinctly uneven spatial distribution in the study 

area. Peel and York regions account for most of the urban growth in the study area 

(65.44%), in which Mississauga, Brampton, and Vaughan are the most active and 

fastest growing areas.   

4) Changes in population over different historical periods are associated with the speed 

of new urban development quite well. This indicates that population is an important 

driving force in urban development. 

5.2 Limitations 

 

The images did not cover the full GTA area and were not completely consistent in 
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coverage for the northeast corner of the study area. Another shortcoming was the absence 

of data for around 1980 or 1981. The second limitation was time. It would be possible to 

explore more involved methods for urban change detection if time were available. Two 

parts of this research are left to improve in possible further study. The first is to quantify 

different lengths of interval associated with urban development rotations and find ways to 

fully capture the urban change. The second is to quantify the spatial evolution patterns in 

two urban development ways – sprawl and backfill.  

 

5.3 Recommendations 

The study area should be extended to the entire GTA. Another direction is to further 

differentiate land use inside urban areas (i.e. residential, commercial, and industrial areas), 

which can be a great value for both government and private sectors. The third is to 

continue to explore Landsat data. Its potential is far from being fully utilized, particularly 

when combined with other higher resolution data. 

 

5.4 Summary 

Urban change detection by using a variety of remote sensing techniques allows for the 

identification of urban features and the capturing of urban changes over time. In 

combination with GIS, the total urban area and its change can be easily assessed. The 

accuracy of derived the urban map results is very good. The overall accuracy for all years 

of classification was above 97% with the exception of 1972, which was 95%. The 

producer and user’s accuracies for all TM data were above 91% and 93%, respectively, 

for the urban class. By using enhancements, the producer and user’s accuracies for MSS 

data were greatly improved, and above 81% and 85% respectively for urban areas. 
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As an efficient technique in terms of time and cost, change detection is valuable for urban 

planners or other users to track the urban development. However, no single technique is 

the best. Further exploration to fully utilize the potential of Landsat imagery is necessary. 

The customization of techniques should be based on different study purposes, data 

conditions, and other situations that arise. 
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Appendix 

Results of urban change detection in original image formats 

1972 maskmap.pix/img 

1974 maskmap.pix/img 

1977 maskmap.pix/img 

1985 maskmap.pix/img 

1987 maskmap.pix/img 

1990 maskmap.pix/img 

1994 maskmap.pix/img 

1999 maskmap.pix/img 

2001 maskmap.pix/img 

2004 maskmap.pix/img 

 

72_74 urbanchange.pix/img 

74_77 urbanchange.pix/img 

77_85 urbanchange.pix/img 

85_87 urbanchange.pix/img 

87_90 urbanchange.pix/img 

90_94 urbanchange.pix/img 

94_99 urbanchange.pix/img 

99_01 urbanchange.pix/img 

01_04 urbanchange.pix/img 
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Database in PIXDSK format in data processing 

1972MSS.pix 

1974MSS.pix 

1977MSS.pix 

1985TM.pix 

1987TM.pix 

1990TM.pix 

1994TM.pix 

1999TM.pix 

2001TM.pix 

2004TM.pix 

 

Original imagery 

Paul.pix 


