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Abstract  

The importance of the Sahel region as a barrier between the lush lands of sub-Saharan Africa and 

the unforgiving Sahara Desert has been known for decades. However, this region has not remained 

impervious to desertification, a process in which vegetation ceases to grow due to changing climate 

and poor agriculture practices, amongst other factors. In 2006, the African Union conceived a plan 

to halt the advancing desert, a wall of greenery stretching from coast to coast dubbed the Great 

Green Wall. Since its inception, the ambitious project has been widely criticized for its slow 

progression, and its utility has been questioned. This study is seeking to quantify vegetation growth 

before the Great Green Wall’s launch and after it to evaluate the importance of the project. With 

the Landsat satellites imaging the Earth since 1972, a large archive of imagery is available for 

examination. By conducting a change detection analysis on images acquired between 1990 and 

2020, vegetation growth can be measured through the project’s duration as well as prior to it.  

Image differencing was used to detect vegetation loss and growth in four time intervals since 1990. 

These results were then coupled with unsupervised classifications that identified land uses. 

Between 1990 and 2002, a period preceding the Great Green Wall, massive vegetation loss was 

observed. The following period, between 2002 and 2007, saw massive growth, undoing much of 

previous time interval’s loss. While growth was again slightly outpaced by loss between 2007 and 

2014, 2014 to 2020 saw vegetation growth soaring again. While the study’s methods allowed for 

the quantification of vegetation change between 1990 and 2020, a correlation between the Great 

Green Wall and these findings cannot be established without additional data such as precipitation 

records or local observations. 
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CHAPTER 1: Introduction 

1.1 The Sahel 

 The Sahel is a geographic region that is situated just south of Africa’s Sahara Desert. While 

its definitions may vary, Udvardy’s (1975) “A Classification of the Biogeographical Provinces of 

the World” defines the Sahel as two separate zones, East Sahel and West Sahel. Each zone of the 

world is attributed such status based on its unique physical characteristics. The most generally 

accepted depiction of the Sahel describes it as a stretch of land approximately 6000 kilometres 

long, ranging between 400 kilometres wide at its narrowest points and 600 kilometres at its widest 

(Figure 1). This swath of land has an area of roughly 3 million square kilometres and passes 

through nearly a dozen nations, from the Atlantic coast of Senegal to Djibouti’s shores on the Red 

Sea (Le Houerou, 1989). 

 Like the Sahara Desert, with which it shares a northern boundary, the Sahel is an arid region 

with infrequent rainfalls. What little rain falls in the region is limited to a short wet season that 

lasts from June to September (Le Houerou, 1989). However, the Sahel’s landscape does vary as it 

acts as a transition zone between the Sahara Desert to the North and the West African Woodland / 

Savanna to the South (Udvardy, 1975). With variability in rainfall accompanying change in 

latitude, fauna and flora also begin to transform. Barren rocky outcrops and sandy dunes change 

to lonely grasslands and sparsely forested depressions. In these southern parts of the Sahel, small 

numbers of wildlife continue to exist, despite being brought to near extinction by poaching and 

overhunting (Le Houerou, 1989). However, time has also considerably changed the landscape of 

the Sahel. Improper land management coupled with climate change’s extreme weather events and 

rising temperatures have led to widespread desertification and the southwards expansion of the 
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Sahara. A study by Liu & Xue (2020), found that the Sahara had expanded by 8% between 1950 

and 2015. The creeping desert has worried residents of the region for decades, crippling their local 

economies and starving them of supplies. With the Sahelian grasslands being turned to dust over 

the years, Sub-Saharan nations have watched as their barrier to the Sahara continues to erode. With 

a pan-African challenge on the horizon, Sahelian and non-Sahelian nations have begun to unite to 

devise a plan against widespread desertification (UNCCD, 2021a) 

 

 

Today, Sahelian Africa is split into the individual nations of Senegal, Mauritania, Mali, 

Burkina Faso, Niger, Chad, Sudan and Eritrea. All of these countries became independent in the 

last century, and most of them have fought through political instability and wars since their 

autonomy was won or granted. Before colonial powers arrived on the continent, the Sahel was 

Figure 1: The Sahel Region and it's constituent countries (Doso, 2014). 
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ruled by kingdoms of indigenous people who warred between themselves, vying for power. 

However, everything changed as the Partition of Africa began in the late 19th century when 

European powers burst onto the continent in an effort to expand their empires (McFarland & 

Rupley, 1998). In many cases, the true intentions of colonial powers were veiled as protectorates 

and treaties. However, these promises were often short-lived. Soon enough, the native populations 

of Sahelian Africa, as with other native peoples in Africa, the Americas and Asia, were suppressed 

by their colonial rulers. In 1914, the world turned into an international battlefield, and many 

European empires recruited troops from their foreign holdings (McFarland & Rupley, 1998). In a 

moment of perceived weakness on the French empire’s behalf, tens of thousands of villagers from 

across French West Africa rallied together against their rulers, resulting in the Volta-Bani War. 

While the movement was stifled within two years, the people of the Sahel had inflicted a noticeable 

blow. Despite their crucial involvement in the Great War and the Second World War, and even the 

Indochina war and Algerian war, autonomy was kept away from the people of the Sahel. Only in 

the 50s and 60s was self-government, and subsequently, independence finally offered to the 

Sahelian people (Harsch, 2017).  

While many countries could now govern themselves, the following historical era was not 

one of peace and overwhelming success. While nations sought to find a new identity, prospective 

leaders fought for power, each with their own ambitions and motivations. In Burkina Faso, famed 

leader Thomas Sankara came to power via the 1983 coup d’état and brought with him a wave of 

change. A product of Marxist-Leninist ideology, Sankara implemented progressive and anti-

imperialist policies such as vaccination efforts, anti-desertification projects, the abolition of 

polygamy and forced marriages, and literacy campaigns (Harsch, 2014).  Despite the humanitarian 

goals of their new leader, a later coup brought and end to Sankara and his politics. His anti-
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imperialist views had earned him criticism, with his successor citing deteriorating international 

relations as the reason for his takeover (Skinner, 1988).  

The story of Burkina Faso’s political instability was in no way unique, and to this day, 

Sahelian nations are plagued with corruption, economic hardship, food insecurity, and war. In a 

recent study of armed conflicts in the Sahara-Sahel, Brito et al. (2013) claim that “there is now an 

unprecedented growth in regional instability, characterized by extremist groups carrying out 

attacks, kidnapping, enslaving, and smuggling arms and drugs to finance their activities”. Groups 

such as Boko Haram and Al-Qaeda have effectively stunted progressive change across the region 

through their reigns of terror. In a vicious cycle, extremist groups such as the aforementioned ones 

have preyed upon and recruited those suffering poor living conditions that are only continued 

through their actions. Furthermore, the violence in the region has made it near impossible for 

humanitarian organizations to work efficiently and in a secure manner.  One such humanitarian 

project which has been severely affected by the sum of decades of instability is the building of the 

Great Green Wall (GGW). 

1.2 The Great Green Wall  

The concept of a Great Green Wall across the Sahel is anything but recent. In 1952, English 

forester turned environmentalist, Richard St. Barbe Baker, began an ecologically minded 

expedition into the Sahara. From this adventure into the desert, the Englishman noted the stability 

provided by tree roots in the Sahel’s crumbling soil.  Having knowledge of the Sahara’s slow 

expansion, Baker conceived the idea of a vegetation barrier, dubbed the Green Front. While 

nothing would immediately come from Baker’s concept, focus on desertification in the region did 

begin to increase (Baker, 1989).  
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Smaller-scale projects combatting desertification, however, would take place before the end of 

the century, setting the foundations for greater ambitions. For example, Burkina Faso’s Thomas 

Sankara saw the effects of desertification and climate change on his people and took action in the 

1980s. He envisioned a wall of 10 million trees to combat the encroaching Sahara, but for his 

ambitious views, his life was cut short, replaced by a man far less interested in environmental 

concerns (Leshoele, 2017).  Through the late 20th century, desertification became more rampant 

across the Sahel, mostly unchecked by nations plagued with other issues or simply uninterested in 

the problem.  

It was only in 2005 that then President of Nigeria, Olusegun Obasanjo, revived the idea of a 

Green Wall across the Sahel. With support from other Sahelian nations, Obasanjo took the 

prospective project to the African Union, which approved the plan in 2006 (Berrahmouni et al., 

2014; Reenberg, 2012). In 2009, a Plan of Action was formally adopted by the African Union, and 

the following year, the Great Green Wall Agency was created, receiving signatures from all 11 

official Sahelian countries (Burkina Faso, Chad, Djibouti, Eritrea, Ethiopia, Mali, Mauritania, 

Niger, Nigeria, Senegal and Sudan). Along with support from the United Nations Convention to 

Combat Desertification (UNCCD) and the Global Environment Facility, the new pan-African 

organization began the Great Green Wall for the Sahara and Sahel Initiative (GGWSSI), the most 

concrete inception of the green barrier so far (Gadzama, 2017; Reenberg, 2012). In this modernized 

approach to the decade-old problem, leaders within the organization did not only want to target 

desertification’s environmental impacts but also its social and economic ones. Through the 

building of the wall, jobs would be created across the subcontinent; sustainable agricultural 

practices would be encouraged and provide sustenance, all on top of the tangible environmental 

benefits felt from building the barrier (UNCCD, 2021).  



  

  6 

While the concept of the Great Green Wall seems to be incredibly ambitious, similar projects 

on a smaller scale have achieved varied success in the past. On the African continent, noteworthy 

examples of greenbelts, green dams or green walls exist in a host of countries. In Morocco, “the 

biological fixation of coastal dunes along the Atlantic Ocean coast to protect cities such as 

Tangiers, Kenitra and Agadi” have occurred as early as 1915 (SSO, 2008). In Algeria, a 1500 km 

long Green Dam was planned in 1971 to combat desertification. While the project initially called 

for the planting en mass of Aleppo pine, the plan evolved over the decades, eventually turning into 

an immense infrastructure and agricultural endeavour. While the Algerian Green Dam had 

numerous shortcomings, many of these can be attributed to poor planning and practices, all of 

which have been fervently studied since (Goffner et al., 2019). Outside of the African continent, 

major afforestation projects have also had major impacts. In China, 34.7% of the land area has 

seen some level of afforestation. A large part of these environmental efforts was contributed to by 

the Three-North Shelter Forest Program (TNSFP), which began in 1978. This project, which was 

conducted in northern China’s arid and semi-arid lands, covered over 3,300,000,000 square 

kilometres. Like in Sahelian Africa, this project was targeting desertification and climate change. 

While much of this area was afforested via traditional tree planting, large swaths were also covered 

through fruit tree planting, helping residents in an economic fashion (Cao et al., 2020).  

While most of these projects had some measurable success, many received criticism. Often, 

these critiques are tied to the unique circumstances of a project. While reproach may follow a 

certain narrative for the Chinese Green Wall, they may be completely different for one in the Sahel. 

With these projects varying broadly in their timeline, expectations and goals may also be 

completely different. A project deemed doomed to fail in the 1950s may be simpler today, given 

technological advancements and more advanced knowledge. A common worry with regards to 
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reforestation projects is that they are too ambitious and thus will either fall short of their intended 

goal or will be poorly implemented. The Sahara and Sahel Observatory’s report (SSO, 2008) on 

the matter highlights both of these problems as:  

1) “the ‘candidate areas for revitalization’ are almost always quite large. Rehabilitating 

these areas, even slightly, would require enormous resources that the African countries 

cannot mobilise because of other preceding priorities. In a difficult financial situation, the 

most adequate strategy is, logically, to concentrate efforts on useful, priority spaces, and 

eventually, to consolidate or extend these efforts”; 

2) “experience has shown that when the quantitative goals are very ambitious, the public 

authorities tend to outsource the work to a national institution (e.g., the Army for the green 

dam in Algeria), obscuring the role of the area’s communities. This leads to well-known 

negative effects: jeopardy of sustainability (difficulties with post-investment management) 

and effectiveness of implementation with technical and logistical problems that make the 

results rather disappointing, or at least not up to expectations, thus encouraging the planners 

to lower their aim.” 

Fifty years after the inception of the Green Dam in Algeria, researchers now know some of the 

crucial mistakes made that led to some of the dam’s shortcomings. These include but are not 

limited to the monoculture of Aleppo Pine, the total absence of a feasibility study, seed type 

selection and poor plant transportation as noted in Briki & Khatra (2010), as well as “poor choice 

of reforestation zones due to extremely limited prior knowledge in terms of biophysical 

characteristics and climate (environment); ill-adapted nursery protocols, planting densities, 

plantation dates and poor seed quality (technical), and insufficient staff expertise, and lack of local 

population buy-in (social)” (Goffner et al., 2019). Post planting procedures such as evaluations 
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and monitoring were also lacking. In the case of the Three-North Shelter Forest Program, a study 

from Cao et al., (2020) found that water consumption by vegetation in the green wall was leading 

to negative impacts. The authors argued that some areas could not sustain prolonged vegetation 

growth without irrigation, and in others, vegetation was draining groundwater sources. While these 

specific problems may not plague the Great Green Wall in the Sahel, implementing such a vast 

idea is evidently very complex. Yet, the UNCCD has already claimed many impressive feats in 

Sahelian countries like Burkina Faso. In this nation alone, roughly 16 million trees have already 

been produced, 29602 hectares of land has been restored to pre-desertification conditions, and 

26869 people have been trained on food and energy security, amongst many other feats (UNCCD, 

2020b).  

1.3 Research Objectives 

 The goal of this study is to gather information regarding the foundations of the Great Green 

Wall. While opinions on the project today vary from cautious optimism to decisive disbelief, there 

is not a better indicator of the project’s necessity than the landscape itself during periods of 

pronounced desertification and afforestation.  Through the visualization of vegetation change since 

the 1970s, project stakeholders can possibly be provided information that will contribute towards 

the project’s operation. In addition to quantifying vegetation change directly before and after the 

implementation of the GGW, the study will seek to understand the ebb and flow of vegetation in 

the region long before 2005. If understood, these trends can act as a baseline to which post-GGW 

change can be compared. This goal will be achieved by conducting a change detection analysis 

utilizing the Landsat satellite program’s image archive. By combining land use classifications 

highlighting vegetation with generic change detection images via a raster calculator, vegetation 
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growth and loss can be isolated and emphasized on a final map product. The images required for 

these analyses will be acquired via two separate streams: 

1) In the first stream, the Normalized Vegetation Difference Index (NDVI) will be applied to 

the chosen pair of images; then, the newer images pixel values will be subtracted from the 

older one. The resulting image will show positive and negative change in the image 

between the two image dates. 

2) In the second stream, a suite of tools (such as spectral indices) will be tested to yield the 

best possible classification of the study area. This classification will break down the image 

into broad land use classes, but most importantly, it will be used to highlight vegetation. 

The accuracy of each tool or combination of tools will be determined via a standardized 

accuracy assessment tool.  

1.4 Study Area 

Although the Great Green Wall is set to span the entire African continent, a project 

detailing it in its entirety would be an arduous undertaking. For this reason, this study will focus 

on a particular country along the wall’s path. Burkina Faso’s Sahel region is a perfect test site, as 

the Great Green Wall will only be implemented in this region. The country’s southern regions are 

considerably lusher with vegetation, placing them in an entirely different geographic region. The 

study area, however, embodies many of the characteristics of its namesake. All of its 36,737 square 

kilometres are covered in a flat, arid landscape dotted with lonely acacia trees and dry riverbeds 

(INSD, 2019). Bodies of water, such as the Mare d’Oursi and the Feildegasse River, appear across 

the region, but most are incredibly shallow and nearly disappear by the end of the dry season. Most 

of the thicker vegetation concentrates along creeks or small rivers that come and go depending on 

rainfall.  
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The Sahel region is the northernmost of Burkina Faso’s 13 administrative regions. It is composed 

of four provinces, Oudalan, Séno, Soum and Yagha (Figure 2), and despite its relatively small 

population of 1,395,109 residents, it makes up 6.9% of the national population. While the region, 

like other Sahelian ones, has experienced constant conflict and difficulties, resulting in 

outmigration, it has more than doubled its population since 1985 (INSD, 2019). These struggles 

are well reflected in Burkina Faso’s regional poverty and accessibility metrics. In metrics such as 

proximity to schools, health centres and markets, or access to electricity, transportation, or a 

refrigerator, it ranks last or second to last (INSD, 2019). Residents who have remained through the 

turmoil either reside in small remote communities connected solely by makeshift roads or slightly 

larger towns, such as the capital, Dori. With much of the region’s land not suitable for farming, 

only certain crops can be grown. Despite this, 80% of the population works in the industry. With 

such difficulties, the success of a massive project like the Great Green Wall could save the Sahel 

region’s inhabitants, and its failure could mean further devastation. 
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Figure 2: The study area in true colour imaged by Landsat 8, contrasted with the Sahel Region's 

full boundaries, and the region’s location within Burkina Faso (inset map). 
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CHAPTER 2: Data  

2.1 The Landsat program 

 All raster images for this study were acquired from the United States Geological Survey’s 

Global Visualization Viewer (USGS GloVis) portal. The initial goal was to study images from the 

Landsat program’s inception in 1972 and thus to use images from each of the satellites throughout 

the program. One of the Landsat program’s greatest features is the deep archive of images which 

spans nearly fifty years. Over this period, NASA and the USGS have launched eight satellites in 

the Landsat program with progressively superior payloads. Despite the immense catalogue of 

images available from these satellites, gaps in image quality and availability do exist.  

During the program’s lifetime, two noteworthy problems have occurred, the launch failure 

of Landsat 6 and the Scan-Line Corrector failure of Landsat 7. When Landsat 6 launched on 

October 5th, 1993, it presented two major benefits. Firstly, it would replace Landsat 5, which had 

already outlived its expected three-year design life. Secondly, the new satellite was equipped with 

the Enhanced Thematic Mapper (ETM), an improved version of the Thematic Mapper (TM) found 

on the two previous satellites in the program. Among the improvements brought with the ETM 

was the inclusion of a new 15-metre resolution panchromatic band (Sheffner, 1994; Markham et 

al., 2004). Not only would this band offer high resolution black and white imagery, but it could 

also be used in a process known as Pansharpening, to upgrade the resolution of other bands. 

Unfortunately, Landsat 6 would never reach orbit during its launch, resulting in a major setback 

for NASA and the USGS. Landsat 5 would now have to bridge the gap with a less advanced 

payload until another satellite could be assembled and launched, all while being far beyond its own 

life expectancy (Sheffner, 1994). The launch of Landsat 7 on April 15, 1999, alleviated these 

problems temporarily, easing pressure on the 1980’s era spacecraft. The newest iteration in the 
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Landsat program carried the Enhanced Thematic Mapper Plus (ETM+), an improvement on the 

sensor carried by its ill-fated predecessor. However, misfortune struck again in 2003, four short 

years after its launch and one year short of its own life expectancy. The scan line corrector (SLC), 

a component in the ETM+ responsible for the sensor’s tracking, failed. This malfunction resulted 

in missing data gaps across every image obtained since the incident, totalling 22% data loss per 

image (Markham et al., 2004; Jia et al., 2014). While the resulting images can still be used for 

certain purposes, Landsat 5 was once again the solution for those requiring complete images. Due 

to this series of unfortunate events, imagery quality and accessibility have fallen short of their 

potential for the last two decades. The higher resolution 15-metre spatial resolution images were 

only available between 1999 and 2003, then again after 2013, whereas they could have been 

consistently available since 1993 (Landsat 6).  

 The image selection process also required images to be cloud-free, available within a 

certain season and processed in a uniform fashion, further limiting image choice. While Landsat 

satellites have been actively imaging the Earth since 1972, precise locations on the Earth are 

imaged at different rates based on their orbit. Landsat 7, for example, orbits the Earth in 99 

minutes, meaning it can image the rest of the Earth and return to the same place in 16 days (Jia et 

al., 2014). Landsats 1 through 3 had an orbit roughly 200 km higher (917km rather than 705km), 

and thus their repeat cycle was 18 days. While spacecraft were calibrated in such a way to “cross 

the equator on each pass at a time that provides the maximum illumination with minimum water 

vapour,” ideal imaging conditions are impossible to guarantee (Lindgren, 1985; Jia et al., 2014). 

So while unlikely, it is possible to have infinite periods of minimal visibility in any given area. 

Another important factor that influences the selection process is the importance of seasonal 

variability. Consistency in the time of year an image is obtained can sometimes be crucial for 
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change detection analyses. With seasonal natural events such as snowfall or vegetation growth, it 

is vital that comparisons are only made between images taken from roughly the same time in the 

year, at a specific time of the year. Since the wet season in the Sahel region lasts from June to 

October, images must be acquired after vegetation has started to grow but before it begins to dry 

out or die (Wu et al., 2020). As such, all the source images for this study were obtained from late 

September until mid-November.  The final major limitation in image availability was the level of 

preprocessing applied by the USGS before release to the public. In the 28 images obtained for the 

purpose of this study, all but one image were processed at the “Precision and Terrain Correction 

(L1TP)” level, while the exception image was corrected to the “Systematic Correction (L1GS) 

level. From the USGS’s processing description website (2021a), we know that: 

• “All Landsat scenes are attempted to process to L1TP, using Ground Control Points (GCPs) 

and a digital elevation model (DEM).  In some cases (and more likely in older Landsat 

data), scene and/or sensor issues, or insufficient reference data can cause L1TP processing 

to fail. Scene issues include snow, ice, and clouds, which prevent an accurate registration 

of GCPs within a scene. Sensor issues include measurement/outliers in the spacecraft or 

instrument telemetry of an interval which also affect the usability of the GCPs. At these 

times, a L1GT or a L1GS product will be created instead.” 

Many of the aforementioned problems ultimately led to the omission of images from the study. 

While the initial goal of the study was to focus on vegetation growth in the Sahel Region since the 

Landsat’s beginning in 1972, this was not achievable. Based on preliminary criteria such as cloud 

coverage and seasonality, 28 images were initially selected (Table 1). Three images were chosen 

for each year in six-year intervals, beginning in 1972, the year Landsat 1 was sent into orbit and 

ending in 2020. With this time period, fluctuations in vegetation growth and loss could be 
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evaluated for over 30 years, establishing a benchmark to which change after the Great Green Wall 

could be compared. However, image previews hid the presence of obstructive artifacts in 

Multispectral Scanner (MSS) images from Landsat 1, 2 and 3 for years 1972 and 1978. Large 

clouds were also hidden in previews for one of the images from 1984, leading to the removal of 

that year’s images. 

Due to the distortion found in the 1978 images, they were also omitted, leaving the 1990 images 

as the new starting point for the study. Inexplicably, a large gap in image availability was present 

from 1996 to 1998, leading to the omission of this year in the study as well. This major loss in 

data, and the resulting effect on the study length, would severely hamper efforts to evaluate pre-

GGW vegetation change. The four remaining datasets, 2002, 2007, 2014 and 2020, did not suffer 

from image unavailability. However, due to Landsat 7’s SLC failure in 2003, Landsat 5 images 

were necessary for 2007. Since the final images were captured by three different satellites using 

three different sensors, small differences are present in the images. The nine images captured by 

the Landsat 5 Thematic Mapper all have a spatial resolution of 30 metres and across six spectral 

bands ranging from 0.45 to 12.5 micrometres. The three Landsat 7 ETM+ images also all have a 

resolution of 30 metres for the visible light and infrared bands, but additionally have the additional 

15-metre panchromatic band. Since this sensor is simply an upgraded version of the original 

Thematic Mapper, the bands cover the same spectral range, and the image swath is nearly identical. 

While Landsat 8’s Operational Land Imager does not carry the same naming convention as its 

predecessors, its first four bands share roughly the same specifications as those of the ETM+ (Roy 

et al., 2014). Only the RED, GREEN, BLUE and NIR bands were retained for each image across 

all three Landsats, as these bands would be the only ones used. The similarities in sensor and image 

characteristics are evidence of the benefits of continuity in the Landsat program. 
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Name Month Day Year Details / Notes 

LM01_L1TP_210050_19731003_20180428_01_T2 Nov 13 1972 

Omitted due to obstructive 

artifacts 
LM01_L1TP_209050_19721025_20180429_01_T2 Oct 25 1972 

LM01_L1TP_208051_19721024_20180429_01_T2 Oct 24 1972 

LM03_L1GS_210050_19781224_20180421_01_T2 Dec 24 1978 
Omitted due to obstructive 

artifacts and non-uniform 

preprocessing 

LM03_L1TP_209050_19781223_20180421_01_T2 Dec 23 1978 

LM02_L1TP_208051_19780914_20180421_01_T2 Sep 14 1978 

LT05_L1TP_195050_19841112_20170220_01_T1 Nov 12 1984 

Omitted due to obstructive 

cloud coverage 
LT05_L1TP_194050_19841121_20170220_01_T1 Nov 21 1984 

LT05_L1TP_194051_19841121_20170219_01_T1 Nov 21 1984 

LT05_L1TP_195050_19901113_20170128_01_T1 Nov 13 1990 

Landsat 5 Thematic Mapper LT05_L1TP_194050_19901122_20170128_01_T1 Nov 22 1990 

LT05_L1TP_194051_19901122_20170128_01_T1 Nov 22 1990 

N/A 
No Data Available within 

Season for 1996 -1998 

LE07_L1TP_195050_20021021_20170129_01_T1 Oct 21 2002 

Landsat 7 Enhanced 

Thematic Mapper+ 
LE07_L1TP_194050_20021014_20170127_01_T1 Oct 14 2002 

LE07_L1TP_194051_20021115_20170128_01_T1 Nov 15 2002 

LT05_L1TP_195050_20070925_20161111_01_T1 Sep 25 2007 

Landsat 5 Thematic Mapper LT05_L1TP_194050_20071004_20161110_01_T1 Oct 4 2007 

LT05_L1TP_194051_20071004_20161112_01_T1 Oct 4 2007 

LC08_L1TP_195050_20141115_20170417_01_T1 Nov 15 2014 

Landsat 8 Operational Land 

Imager 
LC08_L1TP_194050_20141108_20170417_01_T1 Nov 8 2014 

LC08_L1TP_194051_20141108_20170417_01_T1 Nov 8 2014 

LC08_L1TP_195050_20201115_20201209_01_T1 Nov 15 2020 

Landsat 8 Operational Land 

Imager 
LO08_L1TP_194050_20201108_20201120_01_T1 Nov 8 2020 

LO08_L1TP_194051_20201108_20201120_01_T1 Nov 8 2020 

Table 1: All the source images, including those that were omitted (red) and those which were used (green) 
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2.2 Preprocessing 

 Preprocessing refers to the modification of source data with the goal of preparing it for 

later analysis. The following practices were performed to make the analysis simpler operationally, 

less computationally challenging and as accurate as possible. The first tool, Pansharpening, is 

invaluable to achieve the most precise classification and change detection analysis. This process 

is only possible if the sensor which captured the image is equipped with a panchromatic band of 

higher resolution than the other bands. With a panchromatic band included for Landsat 7 and 8 

images, exactly half the images were suitable for Pansharpening. Using the tool in PCI Geomatica, 

all nine images had their spatial resolution improved from 30 metres to 15 metres. While the new 

resolution still does not allow for the observation of more minor features such as individual trees, 

it helps with the contouring of larger features such as large buildings, fields, and water bodies, thus 

increasing the accuracy of classifications.  

To conduct the analysis in the most concise fashion, the source images must be arranged 

into mosaics for each of the interval years. Mosaicking is essential if the goal of the study is to 

analyze each of the source images together as one study area, and not smaller individual areas. 

One large advantage to using Landsat imagery is that despite the program’s large archive of 

images, most images are provided in the same location structure, using path and row identifiers. 

Through the nearly 40 years of images used for this study, three images could be used in each 

mosaic, all of which are in approximately the same position. Since images within a mosaic were 

not always captured on the same day, minor atmospheric differences existed between images. 

However, these inconsistencies were insignificant and therefore did not warrant atmospheric 

correction. One image covered the majority of the region’s western area, another covered the 

majority of the eastern area, and a final image captured the region’s southeastern extremity. While 
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the use of three images slightly cuts off the region’s small eastern panhandle (as seen in Figure 2), 

this is acceptable as it makes the image acquisition process notably easier.  

The mosaicking tool in PCI Geomatica also allowed for the reprojection of source images 

into a single projection for the resulting mosaic. Since Burkina Faso is split in half by zones as 

designated by the Universal Transverse Mercator projection, images of the western part of the 

country were in a different zone (30N) than those in the eastern part (31N). As such WGS84 UTM 

Zone 30N was chosen across all mosaics to keep consistency.  

The final step of preprocessing before spatial analysis was the clipping of the mosaics. Clipping 

or subsetting of an image refers to the action of reducing an image’s extent. This can be done to 

reduce the image size but keep its shape, or the shape of the image can also be reduced to a pre-

set geographic area. Since this study is focused on Burkina Faso’s Sahel Region, a georeferenced 

shapefile approximating the region’s shape and size was used to subset all six of the mosaics. 

However, subsetting the images did come with a few drawbacks. Firstly, since the images were 

provided by three satellites with slightly different imaging paths and image swaths, one of the 

mosaics included areas of missing data. The inconsistency in image size may later be problematic 

as change detection requires each pixel in one image to be compared to another. If one image is 

smaller than another, then the comparison may be flawed or impossible. To solve this issue, images 

were further clipped to the extent of the smallest of the available source images. While the resulting 

images no longer matched the actual boundaries of the region, this is an acceptable loss in the 

pursuit of a more accurate analysis.  
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CHAPTER 3: Methods 

3.1 Image Differencing 

This study is based upon a dual-pronged methodology, in which two separate analysis streams 

are conducted, and the analyses results are combined to create a final change detection image. In 

the case of this paper, image differencing was used alongside unsupervised classification to 

observe vegetation growth or loss between each of four time intervals.  

Image differencing refers to the process of subtracting or dividing an image’s pixel values by 

those of a coregistered image, with the goal of evaluating change between images. In the resulting 

image product, each pixel represents an individual change or lack thereof, indicating positive or 

negative trends across the image. Specific spectral bands or indices can also be used to target 

changes in different surfaces or land uses. Per the USGS’s guide on Landsat 8 Operational Land 

Imager Data (2021b), the blue band can be used for bathymetric mapping, while the green band 

can identify peak vegetation, and the red band can discriminate vegetation slopes. While these 

bands happen to be useful in the identification of particular features, the combination of certain 

bands can often seek out these same features with additional accuracy. For instance, while it is 

known that the green, red and near-infrared bands all aid in the highlighting of vegetation, the 

Normalized Difference Vegetation Index combines the red and near-infrared bands,     ((NIR - 

RED) / (NIR + RED))  to highlight live green vegetation with higher precision. As opposed to the 

green or red bands, the near-infrared band’s unique interaction with the cellular structure of leaves 

allows it to differentiate green vegetation from other green surfaces such as artificial turf fields 

(Karnieli, 2010). In preliminary tests, NDVI performed far superior to the other available bands in 

the observation of vegetation, and as such, it was chosen as the basis of the image differencing 

(Figure 3). NDVI values range between 1 (usually depicted in white) and -1  
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(usually depicted in black), with higher positive values indicating healthy vegetation and lower 

negative values indicating a lack of healthy vegetation. Other surface types can also be 

distinguished based on their NDVI values and general characteristics. Dry soil and rocky areas 

take on near-neutral index scores, whereas bodies of water are portrayed with strong negative 

values.  

Across each of the four sets of time intervals, pixel values in the earlier images were subtracted 

by those in the later images (i.e., 1990 minus 2002). In the new image (Figure 4), negative values 

represented growth, positive values represented loss and pixels with a value of zero represented 

no change (although these are incredibly rare). As an example illustrating how these results would 

be obtained, a negative value representing a lack of vegetation minus a positive value representing 

vegetation would result in another negative value, indicating vegetation growth.  

The first class represents general vegetation growth and is occupied by pixel values between 

(-2) and (-0.01). On the opposite end of the spectrum, the third class represented vegetation loss 

and is occupied by values between 0.01 and 2. The remaining pixels in the (-0.01) to 0.01 range 

are composed of no change or meaningless change, and as such, are placed in the second class, 

aptly named the “No Change” class. All class cut-off values were chosen to limit the size of the 

no change class, while not rendering it empty, and consequently, purposeless.   

3.2 Unsupervised Classification 

The second type of analysis conducted was an unsupervised classification to classify land uses 

within images. Unsupervised classifications differ from supervised classifications as the 

classification runs itself once the input parameters are set. Conversely, supervised classification 

requires the creation of training areas that inform artificial intelligence on how features should be 

classified. This method is also much more difficult without reliable ground- 
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truthing as poorly chosen training areas can negatively affect the classification’s accuracy. The K-

Means clustering algorithm, also known as the basic Isodata or migrating means method, seeks to 

group pixel values into clusters based on the differences between values and the differences 

between clusters (Duda & Canty, 2002). The classification was set to have 30 output classes and 

15 iterations. While a higher number of clusters can generally result in a more discriminating 

analysis, thus potentially increasing classification accuracy, the classification outputted a dozen or 

so empty classes each time. These empty classes indicate that the tool could not find any more 

significant differences between values and classes, and thus no more output classes were required. 

These classes would then be further classified into five aggregate classes that refer to land uses: 

Barren land, Vegetation, Water, Built-Up and No Data. The “No Data” class refers to any area 

outside of the boundaries of the image that was still classified. 

In order to choose the best data for classifying images, three rounds of classifications were 

executed, each with different data inputs, then tested for accuracy. Each successive round of 

classification would add another layer of data in the hopes of improving upon the preceding 

classification’s results. Accuracy would be measured by generating 200 random points on the 

image, then comparing the classification of those points to a natural colour reference image to 

determine whether the area at those points was classified correctly. The most recent mosaic was 

used as the test data as the higher spatial resolutions could prove useful in the identification of 

different land uses and geographic features. The first classification was based on the image’s 

visible bands (red, green and blue bands), and as expected, this classification was not very accurate 

(Figure 5). Both the barren land and vegetation classes were correctly classified in only 66% of 

cases (Table 2).  
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Overall Accuracy: 67.50% - 95% Confidence Interval (60.75% 74.24%) 

Overall Kappa Statistic: 0.35% – Overall Kappa Variance: -0.03% 

Class Name 
Producer’s 

Accuracy 

95% Confidence 

Interval 

Users 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Barren 

Land 
66.87% (59.33% 74.40%) 96.61% (92.61% 100.31%) 0.8087 

Vegetation 66.67% (48.13% 85.20%) 46.51% (30.44% 62.58%) 0.3707 

Water 0.00% (-50.00% 50.00%) 0.00% (-4.16% 4.16%) -0.0050 

Built-Up 0.00% (0.00% 0.00%) 0.00% (0.00% 0.00%) 0.0000 

 

Barren land was often misclassified as vegetation or built-up land as its dark brown areas 

can be confused with vegetation and its grey areas confused with the high reflectance of roof 

structures (Figure 6). Bodies of water are difficult to identify as all but a few of them in the region 

take on a light beige silty appearance or a dark green colour due to algal blooms. These unusual 

appearances, in contrast with the expected blue colour, result in misclassification with the sandy 

appearance of barren land or terrestrial vegetation. Even the most natural-looking lake in the 

image, Lake Higa in the southeast corner of the region, was misclassified as vegetation despite its 

deep blue colour. 

In the second classification, the Normalized Difference Vegetation Index (Figure 3) was 

added to the visible bands (Figure 2) to facilitate the classification of vegetation. Unexpectedly, 

much of the area covered by the vegetation in the previous classification was now classified as 

barren land (Figure 6). General accuracy for the classification rose significantly from 67.5% to 

Table 2: Accuracy Assessment Results from PCI Geomatica for the first classification 
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82%, and barren land’s accuracy rose to 87.4%, but the vegetation class accuracy plummeted to 

45% (Table 3). While the addition of NDVI seemed to fix some previous problems, it invited 

others. One prominent change in the second iteration of classifications was the lack of output 

classes aggregated into the built-up class. While the previous classification identified a spectral 

class in some of the region’s population centres, the newest classification did not. As such, 

misclassification between the barren land class and the built-up class fell dramatically (from 22 

misclassifications to 0) due to NDVI’s strong ability to inadvertently identify water bodies.  

  

The Normalized Difference Water Index (NDWI) was added to the previous classification’s 

input bands in the third classification in an effort to reduce misclassifications between vegetation 

and water classes (Figure 7). McFeeters’ NDWI (1996) was developed to “delineate open water 

features and enhance their presence in the remotely-sensed digital imager.” Like the NDVI, it is 

calculated with a simple equation consisting of two bands (GREEN – NIR / GREEN + NIR) While 

this index was able to distinguish small rivers with high precision, it still struggled with algae- 

Overall Accuracy: 82.00% - 95% Confidence Interval (76.42% 87.57%) 

Overall Kappa Statistic: 0.30% – Overall Kappa Variance: 0.02% 

Class Name 
Producer’s 

Accuracy 

95% Confidence 

Interval 

Users 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Barren 

Land 
87.42% (82.23% 92.62%) 92.16% (87.78% 96.55%) 0.3735 

Vegetation 45.00% (20.69% 69.30%) 30.00% (11.93% 48.06%) 0.2222 

Water 0.00% (-16.66% 16.66%) 0.00% (-25.00% 25.00%) -0.0152 

Built-Up 0.00% (0.00% 0.00%) 0.00% (0.00% 0.00%) 0.0000 

Table 3: Accuracy Assessment Results from PCI Geomatica for the second classification 
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covered lakes and ponds (Figure 8). Large swaths of presumably damp land and certain artificial 

structures also displayed notably high reflectance through the use of the index. Despite the 

NDWI’s inability to classify water bodies with algal blooms as water, the accuracy of the 

vegetation class rose from the previous classification’s 45% to 66.6% (Table 4). While overall 

accuracy dropped slightly in this third classification, the importance of the vegetation class’ 

accuracy supersedes overall accuracy. This classification was also still more accurate than the first, 

presenting a clear pick in classification method for the other images (Table 5). 

With the 2020 image classified, the third classification methodology was applied for the three 

remaining mosaics (2002, 2007, 2014). While each time interval was composed of two images, an 

older one and a more recent one, only one image needed to be classified for each interval. The  

more recent image was selected for all three of the intervals, as this image represented a more 

recent depiction of land use. It must also be acknowledged that since the classification accuracy 

tests were only done using the 2020 mosaic, classification accuracy may vary for other images. 

This is to say that, had the accuracy testing been done on Landsat 5 or Landsat 7 mosaics, accuracy 

values may have differed from those obtained from the Landsat 8 mosaic.  

Each class was also given a unique identifying number that would be used to combine the 

image differencing products with the land use classification ones. The three image differencing 

classes (growth, no change, and loss) were given identifiers from one through three, respectively. 

The five classification classes (Barren Land, Vegetation, Water, Built-Up, and No Data) were 

given identifiers that are multiples of ten, from ten to fifty. When the images are added together 

through the raster calculator, overlapping classes from each image are fused together to create new 

classes. With the new class comes a unique class identifier produced by the addition of the two 

previous classes’ identifiers. For example, if the growth ID = 1 and the vegetation ID = 20,  
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then the vegetation growth ID = 21. Since no other class combinations can sum to 21, this new 

class is unique and can be easily identified. For the sake of this study, the vegetation growth and 

the vegetation loss classes will be the only ones of interest for the remainder of the paper. 

 

 

Overall Accuracy: 79.50% - 95% Confidence Interval (73.65% 85.34%) 

Overall Kappa Statistic: 0.45% – Overall Kappa Variance: 0.42% 

Class Name 
Producer’s 

Accuracy 

95% Confidence 

Interval 

Users 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Barren 

Land 
81.32% (75.09% 87.55%) 94.40% (90.28% 98.52%) 0.6709 

Vegetation 66.66% (45.72% 87.61%) 34.04% (19.43% 48.65%) 0.2502 

Water 50.00% (-44.29% 144.29%) 50.00% (-44.29% 144.29%) 0.4949 

Built-Up 0.00% (0.00% 0.00%) 0.00% (0.00% 0.00%) 0.0000 

 

 

Classification 
Barren 

Land 
Vegetation Water Built-Up Overall 

1. Visible Bands 66.87% 66.66% 0.00% 0.00% 67.50% 

2. 1 + NDVI 87.42% 45.00% 0.00% 0.00% 82.00% 

3. 1 + 2 + NDWI 81.32% 66.66% 50.00% 0.00% 79.50% 

 

 

 

Table 5: Accuracy Assessment Results for all three classifications 

Table 4: Accuracy Assessment Results from PCI Geomatica for the third classification 
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CHAPTER 4: Results & Discussion  

4.1 1990 to 2002 

 Once the change detection layers were completed, each time interval’s two change classes 

(vegetation growth and loss) were combined with the more recent natural colour image. The latter 

is the same image used to create the land use classification for the respective time interval. The 

natural colour image helps in the detection of underlying geographic features, as well as areas that 

have not sustained change during the image’s time interval. All vegetation growth and loss, as 

previously defined, were tracked in green and red, respectively. The bold contrast between layers 

allows the analyst to identify the location of changes and any relevant patterns it may display in 

relation to the landscape below. Pixel counts for both of the image’s classes were also generated 

when the new change detection images are created. By combining these counts with the image’s 

respective pixel size (or spatial resolution), the classes’ coverage area can be calculated and thus 

compared over different periods.  

 The 1990 to 2002 analysis revealed massive vegetation loss across the entire Sahel region 

(Figure 9). Over 9608.75 square kilometres of the region’s area experienced a reduction in 

vegetation between these two years. This loss contrasts heavily with the quite low 373.02 square 

kilometres that experienced vegetation growth. Furthermore, from the change image, many of the 

small growth hotspots are located on bodies of water. The most prominent cases of this are the 

Mare d’Oursi, in the northcentral part of the image or the river network in the southeastern corner 

of the image. Vegetation loss also covers some major water bodies, such as the unnamed lake next 

to the village of Gomde, or the Mare de Dori. While these changes perhaps indicate the beginning 

or end of an algal bloom, they also prove to be a nuisance in quantifying terrestrial vegetation 

changes. Vegetation loss, however, was not limited to water bodies and expanded into many of the 
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study area’s valleys, along its rivers and even across its plains. This loss also appeared to be 

occurring in denser patches along more extreme topography and more sparsely in the plains and 

other flat areas. The only major exception to this observation is the dense vegetation loss in the 

southeastern corner of the study area. Here, the dense vegetation loss class covers most of the 

surface area, with small pockets of growth peeping through along rivers and streams. Other clusters 

of vegetation loss occurred in longitudinal bands matching underlying geographical formations. 

4.2 2002 to 2007 

 The 2002 to 2007 analysis (Figure 10) resulted in extreme opposite findings to the previous 

time interval. All prior vegetation loss seems to have been balanced by near-identical vegetation 

growth in the same places during this time period. However, despite the growth class appearing 

similar to the previous time interval’s loss class, this class’s coverage was far denser. Through its 

pixel count, it was determined that 15357.19 square kilometres had experienced vegetation growth 

between 2002 and 2007. Additionally, only 4.61 square kilometres had experienced vegetation 

loss in this time period. This is reinforced by the complete lack of red colouring on the image at 

first glance. While the image was no perfect mirror image to that of the previous time interval, it 

showed approximately the same patterns. Though, growth did seem to be slightly sparser in the 

southwest and denser in the west. Again, most large bodies of water were shown to have grown 

vegetation as a result of algal blooms or possibly prior misclassifications in the study. Such 

extreme results as a whole may be a sign of problems in the methodology but could also point 

towards a trend back to normalcy after extreme climatic conditions in the period between 1990 

and 2007.  
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4.3 2007 to 2014 

 The third time interval from this study contributed far less extreme results (Figure 11). A 

blend of vegetation growth and loss which seemed to be far more even than the two preceding 

results. Pixel counts from this image indicate that the vegetation growth class occupied 4056.48 

square kilometres of the study area, whereas vegetation loss covered 5660.66 square kilometres. 

While the loss class seems to stick to the same valleys and rivers in a dense uniform fashion as 

with previous results, the growth class seems to appear far less dense and on the periphery of 

geographic features. Vegetation growth also appears denser in concentrated pockets across the 

region, a pattern not yet seen in previous images. This image has also notably classified large water 

bodies far more accurately, not depicting the lake near Gomde or the Feildegasse River as 

vegetation at all. Regardless of this, many of the other water bodies, such as the Mare d’Oursi and 

Mare de Dori, were classified as vegetation loss zones. While this image may be a blow to those 

hoping for further vegetation growth in the region, the image must also be contextualized by 

previous findings. With such large-scale vegetation growth between 2002 and 2007, continual 

vegetation growth may be at its limits. As such, this image may also be a sign of vegetation 

stabilizing after a massive peak.  

4.4 2014 to 2020 

 The final time interval yielded an image that appeared similar to that of the 2007 to 2014 

period at first glance (Figure 12). Vegetation growth now covered 5685.49 square kilometres, 

handily overtaking vegetation loss, which only covered 1309.98 square kilometres. Similar to the 

previous image, vegetation growth was not rigidly limited to valleys and rivers, yet the image did 

show proof of some large clusters of vegetation growth, a pattern not seen previously. Like with 

the 2007 to 2014 period, the same large bodies of water were also once again not misidentified 
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However, this final image also possessed several unique qualities. The northern portion of the 

image saw very little overall change as opposed to all three of the previous change detection 

images. There were also several large, dense vegetation loss clusters in the centre of the image. 

These clusters share no similarities with those in the previous image, yet their conspicuous 

proximity to each other may be telling of some specific event or unified conditions. While 

documentation indicates that large-scale environmental degradation, including deforestation, fires 

and overgrazing occurred between 2012 and 2013, no noteworthy vegetation loss event has been 

specified in the region since 2014 (ACAPS, 2019). 

4.5 Implications and Discussion 

 Despite large changes to the study’s temporal scope and partial changes to the physical 

study area, the findings of this study are intriguing. The extreme nature of changes in vegetation 

through the 1990s into the 2000s may summon more questions than they answer. The same can be 

said for the latter half of the timeline, in which change became far more subtle (Table 6). Since the 

beginning of this research, data availability has been instrumental in analyzing a corner of the 

world that has long been ignored.  Since Landsat satellites were designed to image the entire globe 

without targeted or prioritized regions, they have allowed time-series analyses into the past for 

remote regions. The quantification of past changes is possible at a scale not previously attainable. 

However, the unavailability of qualitative data has made the contextualizing of quantifiable data a 

far more complex task than initially perceived. Although the results of such a study could lead to 

conceptual breakthroughs for projects like the Great Green Wall, the observations made are 

inconclusive without additional contextual information such as local knowledge or insight from 

other disciplines (i.e., climatology, biology, history). Without additional information, arguments 

for the continuation of the wall could be made as easily as arguments against it. As seen in Figure 
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 13, vegetation growth has fluctuated greatly over the past three decades. Growth outweighed loss 

for two of the time intervals during or after 2005, and for another, they were almost even. This 

could indicate a positive trend for the GGWSSI in a battle against all odds. With results such as 

these, critics should be satisfied and additional funding for the project may be justified. Studies of 

each individual time interval could also be led to determine what factors are responsible for the 

higher growth between 2002 – 2007, and 2014 – 2020. However, the quantitative results could 

also be totally unrelated to the Great Green Wall for the Sahara and Sahel Initiative. These results 

could be a sign that natural vegetation is growing back  

 

 

 

on its own, independently of any afforestation efforts. With additional resources, these trends could 

be attributed to climatological conditions such as increased rainfall or decreases in heat. In this 

case, there may be an argument against the continuation of the project, as it has drawn incredible 

financial resources that could be diverted to other causes. Regardless, of these possibilities, studies 

on the Great Green Wall, must continue both in Burkina Faso and the rest of the Sahel, as this is 

the only way to know whether this is the success of the century or it’s largest failure.  

 

Time Intervals Vegetation Growth Vegetation Loss Net Change 

1990 to 2002 373.02 km2 9608.75 km2 -9235.73 km2 

2002 to 2007 15357.19 km2 4.61 km2 15352.58 km2 

2007 to 2014 4056.48 km2 5660.66 km2 -1604.18 km2 

2014 to 2020 5685.49 km2 1309.38 km2 4376.11 km2 

Table 6: Area Covered by Change Classes in Square Kilometres 
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Figure 13: 30 Years of Vegetation Change in Sahel, Burkina Faso  
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Chapter 5: Conclusion 

 The Great Green Wall is as unique a project as it is an ambitious one. Thousands of 

kilometres long, hundreds of kilometres wide, with the livelihood of millions at stake, its success 

is far from guaranteed. Plagued by logistical problems as much as by violence and corruption, the 

cause has been doubted by all. However, the fight that it leads is also an essential one. The Sahel 

is disappearing, crushed by an ever-expanding desert that engulfs the necessities for life in the 

region and plunges the Sahelian people into further despair. With previous green walls and dams 

achieving success, the difficulty of a Great Green Wall across the Sahel relates to the project’s 

sheer scope. Through the use of mixed remote sensing methods such as image differencing, 

spectral indices and unsupervised classification, it appears that vegetation has slowly begun to 

return to the region. Vegetation growth outpaced vegetation loss in the study area nearly five to 

one between 2014 and 2020. However, attributing this success to GGW is impossible. A lack of 

contextual data relating to climatic conditions, individual project advances, and local observations 

(both current and historically), leads to difficulties in establishing causal relationships between 

perceived progress and reality. So as the Great Green Wall continues forward, hopefully, this study 

can provide some of the quantitative information needed to solve such a complex conundrum. Will 

the Great Green Wall work?  

5.1 Limitations 

Although this study was hampered by limitations in data since the very beginning, the 

effects of these constraints could not be foretold until the completion of the analysis. However, 

with the results now available, the importance of contextual qualitative data is apparent. The 

immense shift from extreme vegetation loss through the 1990s to the extreme growth of the early 

2000s almost appears to be a methodological error given the results. With additional contextual 
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information such as precipitation data, perhaps these gaps in certainty could be partially filled. The 

absence of these data is not unsurprising either, given the poor quantity and quality of data 

produced by Burkina Faso authorities, especially over the last thirty years. While precipitation data 

for more developed regions of the world were available within the timeframe of this study, a lack 

of weather instrumentation and reporting in the region created a gap that may never be filled.  

It must also be noted that all vegetation change images capture solely the differences 

between the source images and cannot describe the series of minor changes that may make up a 

final change. For example, if vegetation grew steadily between 2020 and 2029, a serious drought 

in 2029 could wipe out any sign of previous vegetation growth and simply show vegetation loss 

between 2020 and 2030. While the use of smaller time intervals over the same time period could 

alleviate this issue, it would also require far more time and data. While not perfect, the choice in 

time intervals was heavily influenced by the lack of data on a finer temporal scale. 

One of the foundational components for this project, the large archive of publicly available 

Landsat data, also quickly became a severe limitation for the scope of this study. Image 

unavailability from the 1970s through the 1990s due to a wide range of technical problems severely 

limited the length of the timeline for this analysis. Furthermore, the data that were available are of 

lower spatial resolution as opposed to newer imaging systems. The 30-metre resolution of Landsat 

5 and 15-metre resolution of Landsats 7 and 8 have difficulty identifying sparse vegetation, such 

as that of the Sahel. Single groups of trees may only be recognized as a grey pixel that averages 

the dark tones of vegetation with the light tones of the surrounding sand. For future attempts at 

quantifying vegetation change, it may be best to try and obtain airborne imagery of at least 1-metre 

resolution. As a result of this unsatisfactory resolution, even the most accurate classification 

method was mediocre at best, putting into question the usefulness of the final results. 
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