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Abstract 

 

 The use of remotely sensed satellite image data for the generation of information 

concerning large areas is relatively inexpensive when compared to other methods.  Urban 

development within the Upper Thames River Conservation Authority was determined 

using an image differencing approach for the period 1991 to 1999.   

 

Six urban regions within the UTRCA were examined, ranging in population from 

over 400000 to less than 4000.  Band 2 differencing was found to be the most adept 

technique for determining development, in combination with a three class Minimum 

distance supervised classification of the region. Accuracies of initial remotely sensed 

classification were improved following orthophoto post classification editing, producing 

an overall accuracy of 90% with user’s and producer’s accuracies ranging between 84% - 

98%.  Results show the UTRCA experienced 17.36km2 of urban development over the 

study period.  Smaller urban regions had the highest percentage rates of development, 

while slightly lower growth levels were found in two ‘middle’ sized cities.  
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Chapter 1: Introduction 

 

The Upper Thames River Conservation Authority (UTRCA) is situated in 

southwestern Ontario, and includes 28 sub-watersheds associated with the Thames River 

with a total area of 3447 km2 (Figure 1.1).  The mandate of the authority is to protect the 

watershed’s rivers, streams, and lakes while conserving the region’s natural habitats 

through various programs (UTRCA, 2003).  Threats to the region’s environment include 

urban encroachment, deforestation, and pollution causing loss of water and natural 

resource quality (UTRCA Report Cards, 2001). 

 
Figure 1.1:  Southwestern Ontario Conservation Authorities and County Boundaries 

(Source: modified from UTRCA, 2003) 
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Satellite Remote Sensing (RS) provides tools for researchers that allow for the 

determination of land use and land use change in large areas (Lillesand and Kiefer, 2000). 

The conservation authority has little knowledge of how land use has changed over time 

and is interested in determining where urban development has occurred. 

 

1.1 Study Area 

 

Southwestern Ontario is a triangular area bordered by Lake Erie to the south and 

Lake Huron and Georgian Bay to the north, with the UTRCA directly in the middle of the 

region.  London Ontario (pop. 432451) is the largest urban centre in the conservation 

authority, and ranks as the tenth largest urban area in Canada.  Other main UTRCA urban 

centres are: Woodstock (pop. 33061), Stratford (pop. 29676), Ingersoll (pop. 10977), St. 

Marys (pop. 6293) and Mitchell (pop. 4022) – population data are from 2001 (Statistics 

Canada, 2003) (Figure 1.2).  

 

Ontario conservation authorities (OCA) were set up in 1946 under the 

Conservation Authorities Act based on fears of environmental deterioration and provision 

of employment opportunities for soldiers returning from WWII (Shrubsole, 1996; Ivey et 

al., 2002). There are currently 38 OCA in the province, most of whose boundaries are 

based on watersheds – the UTRCA boundary is based on the northern portion of the 

Thames River watershed.  The region is predominantly rural in nature, with 66% of land 

cover considered agriculture with an estimated 5500 farming operations (UTRCA, 2003).   
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Figure 1.2:  UTRCA urban regions 

 
 

1.1.1 Water Monitoring 

The UTRCA and other OCA were initially concerned with surface water and 

natural resource management, with an emphasis on flood management and reforestation 

(Shrubsole, 1996; Ivey et al., 2002).  Efforts in flood control are still a major focus of 

OCA efforts; flood and erosion control was listed as one of four major initiatives that 

OCA should undertake by a 1987 Ontario Ministry of Natural Resources (OME) 
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committee (OME, 1987 as found in Shurbsole, 1996).  Land use and land use change 

information are required to ensure development is not occurring in regions which may be 

prone to flooding, thereby placing lives and resources at risk. 

   

Recently efforts have shifted from solely surface water management to 

groundwater management (Ivey et al., 2002) especially in light of the 2000 Walkerton, 

Ontario disaster where seven people died as a result of consumption of E. Coli 

contaminated water (OME, 2003).  E. Coli is one of many organisms that can be found in 

fresh water that can threaten human health.  Others include: Vibrio cholera, Shigella, 

Campylobacter jejuni, Salmonella, Yersinia enterocolitica, Giardia lamblia, 

Cryptosporidium parvum, Entamoeba histolytica, Toxoplasma gondii, Balantidium coli, 

Norwalk virus, Rotavirus, and Hepatitis A and E.  (Davies and Mazumder, 2003). The 

potential for these compounds to be found in drinking water requires OCA to monitor and 

manage the quality of water within their regions through maintaining up-to-date 

information on water quality, planning for water protection, and remediation of water use 

(Ivey et al., 2002). 

 

Land use and land use change information are very important in terms of water 

management, as different types of land use processes can contaminate both surface water 

and groundwater. Davies and Mazumder (2003) state that the impacts of industrialization, 

agriculture, and urbanization are closely linked to drinking water supplies.  Major 

agricultural contributors to the deterioration of water quality include the use of fertilizers 

and pesticides as well as waste produced from livestock farming (Maticic, 1999).  
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Sources of urban pollutants that may affect water quality are innumerable, ranging from 

waste caused by transportation to everyday litter. 

 

1.1.2 Natural resources other than water 

As well as having a mandate to protect the region’s water supply, the UTRCA is 

also charged with maintaining the health of its other natural resources.  These include 

wooded areas, natural areas, and parks.  The UTRCA has many projects underway 

intended to facilitate the conservation of these areas including tree planting services, 

management of bogs/wetlands, and the provision of natural areas for the public to enjoy 

(UTRCA, 2003).  Determination of land use and land use change is important for the 

UTRCA in the above areas for reasons of resource allocation and determining if current 

and past efforts are successful. 

 

1.1.3 Challenges to the UTRCA 

Increasing demand for analysis undertaken by OCA has been met with decreases 

in funding from governments due to cutbacks.  On average total revenues for the 38 OCA 

dropped 11% from 1993 to 1998, with some OCA reporting losses of almost 50%.  

UTRCA provincial funding, which was 31% of UTRCA revenues in 1992, fell 68% by 

1998 (Ivey et al., 2002). 

 

In order to maintain its mandate the UTRCA requires accurate information for 

decision-making processes, which includes land use information (Shrubsole, 1996).  The 

UTRCA has little knowledge of satellite remote sensing and associated applications; to 
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date there have been no studies conducted by the authority using these techniques.  

Analysis of satellite images, which are available free of charge through the Canadian 

Ministry of Natural Resources and similar organizations, can be used in conjunction with 

other information sources to provide geospatial data analysis at relatively low costs.  

 

1.2 Landsat Satellite Program 

 

Satellite imagery has been available for civilian land use classification and 

analysis since 1972 with the launch of Landsat 1.  Since the launch of Landsat 1 there 

have been five subsequent Landsat satellites put into orbit (Table 1.1). 

 

 

Table 1.1: Landsat Satellite History and Status 

Satellite Launched Status 

Landsat 1 July, 1972 decommissioned 1978 

Landsat 2 January, 1975 decommissioned 1982 

Landsat 3 March, 1978 decommissioned 1983 

Landsat 4 July, 1982 standby mode 

Landsat 5 March, 1984 still operational 

Landsat 6 October, 1993 failed to achieve orbit 

Landsat 7 April, 1999 
still operational – experiencing 
Scan Line Corrector (SLC) 
problems since May 31, 2003 

(Source: modified after Lauer et al., 1997) 

 

The instruments on board have included the Return Beam Vidicon (RBV) on 

Landsats 1-3, the Multispectral Scanner (MSS) on Landsats 1-5, as well as an instrument 

introduced for the Landsat 4 and 5 missions called the Thematic Mapper (TM). An 

Enhanced Thematic Mapper (ETM+) was launched on the most recent Landsat 7 satellite.  

Landsat imagery is archived, meaning time-series data are available for analysis (Lauer et 

al., 1997).  Landsat 7 data acquired since May 31, 2003 are not considered useable for 
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analysis due to a malfunction with the Scan Line Corrector (SLC), which compensates 

image distortion caused by the forward motion of the satellite (USGS, 2003).  This study 

is not affected by this malfunction, as Landsat 7 images are taken prior to the date of the 

SLC malfunction.  It is however hoped that this problem can be corrected in the near 

future. 

 

1.3 Data 

 

One satellite image was acquired free of charge through the Global Land Cover 

Facility at the University of Maryland, and two were acquired free of charge from Natural 

Resources Canada, via the GeoGratis website (Table 1.2) (GLCF, 2003; GeoGratis, 2003). 

 

Table 1.2:  Acquired Landsat images 

Satellite Landsat 5 TM Landsat 7 ETM+ Landsat 7 ETM+ 

Image date 11-Aug-91 3-Sep-99 30-Oct-00 

Path/Row Path 19, Row 030 Path 18, Row 030 Path 19, Row 030 
Pixel Resolution 28.5m 30m 30m 

Source GLCF GeoGratis GeoGratis 

 

 

The 1999 image was used as the latter image in this study, even though the 2000 image is 

more recent.  The time of acquisition of the 2000 image meant spectral confusion between 

urban and agriculture features was felt potentially too great for an accurate classification.  

This is a result of fallow and tilled fields having similar spectral characteristics to urban 

features (Griffiths, 1988 as found in Masek et al., 2001).  The 2000 image was acquired in 

late October, when most fields have been harvested and are being prepared for the winter 
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season.  The 1999 image was acquired in early September, when presumably more 

agricultural fields are ‘green’. 

 

 

Other data used in the analysis include: 

 

 A network of black and white aerial photographs of the UTRCA at 35cm 

resolution, taken April 18 – 21, 2000.  While these are valuable to the authority, 

and were used in this research, obtaining these photos is expensive and therefore 

impractical for constant analysis purposes due to the large size of the conservation 

authority. 

 

 UTRCA data consisting of ESRI shapefiles of geographic features (watershed 

boundaries, watercourses, road networks etc…).    

 

 

1.4 Objectives 

 

A combined radiometric band differencing and supervised classification method was 

used for change detection analysis with the 1991 and 1999 Landsat images. Specifically, 

urban encroachment on surrounding environments was examined. This affects the entire 

watershed, especially with the increasing size of the City of London (UTRCA Report 

Cards, 2001).  Urban development has been detected using radiometric differencing in 

many studies (Ridd and Liu, 1998; Masek et al., 2000; Ji et al., 2001; Forsythe, 2002a). 

Through completion of this analysis, the UTRCA will further understand urban 

development within its region and potentially use this information to maintain water 

quality and natural resource conservation mandates.  
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Chapter 2: Literature Review 

 

2.1 Remote sensing for land use classification and change detection 

 

Data acquired by satellite sensors can be transformed into information by the user 

through image classification and change detection.  Jensen (1996) states there are many 

parameters that must be considered to ensure the most accurate results possible.  These 

include: determination of appropriate classification scheme, image correction, 

consideration of classification type, selection of bands to use in classification, error 

assessment, and final map production. 

 

Urban development detection methods must include the above considerations as 

well as temporal and spatial resolution consistency issues.  Examination of the above 

parameters helps in establishing which method of identifying change is most appropriate 

for the data and classification methods employed (Jensen, 1996). 

 

2.2 Classification Scheme 

 

There are several standard recognized classification systems, which can be altered 

to fit the needs of the analyst.  The United States Geological Survey (USGS) land cover 

classification system for use with remotely sensed data focuses on nine major land cover 

types with as many as seven subheadings for each. A total of 38 different land cover 

types are represented (USGS, 1992).  This differs from the US Fish and Wildlife Service 
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(USFWS) Wetland Classification System, which is focused on wetland and marine 

environments.  This system contains 55 different classes based on five major aquatic 

systems and ten subsystems (Cowardin et al., 1979).  A Canadian equivalent to the 

USFWS system is the Canadian Wetlands classification system developed by the 

National Wetlands Working Group.  This system is based on classification of five major 

types of wetland: bog, fen, swamp, marsh and open shallow water with further division 

into wetland types (CCRS, 2003). 

 

Very rarely do end classifications exactly resemble a standard classification 

system.  Some can be relatively simple; Tole (2002) used a 3-category classification of 

‘water/cloud/shadow’, ‘forest’ and ‘land not forest’ for an MSS forest classification and 

change detection study in Jamaica.  These systems are used in order to reduce spectral 

variation and obtain a more accurate classification (Tuomisto et al., 1994).  Other 

classification systems can be quite complex when the mapping of unique land cover types 

is wanted.  Shaban and Dikshit (2001) using SPOT images of India had 19 classes with 

some as unique as ‘water station’ and ‘cremation ground’. The chosen classification 

system will be a compromise between level of detail wanted and accuracy required. 

 

2.3 Corrections to RS data 

 

Remotely sensed data when initially acquired can be prone to error (Vogelmann et 

al., 2001).  The correction process, be it geometric or radiometric, is designed to reduce 

or eliminate error in an image (Song et al., 2001; Vogelmann et al., 2001). 
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2.3.1 Geometric Correction 

Geometric error in satellite data can result from a wide range of factors including 

sensor misalignment, spacecraft velocity, and the curvature of the earth.  This results in 

geometric distortions in the data, meaning the image does not line up perfectly with the 

area of the earth with which it is concerned.  Corrections for these errors are usually 

performed at ground processing stations and will not be discussed further (Jensen, 1996; 

Vogelmann et al., 2001). 

 

2.3.2 Geometric Rectification 

For purposes of change detection it is essential images are aligned perfectly (Yang 

and Lo, 2002).  This requires a re-sampling of the image to a known source that is 

appropriately projected.  Many change detection studies (Masek et al., 2000; Forsythe, 

2002a; Prol-Ledesma et al., 2002) use a system of ground control points (GCP) for disk-

to-disk registration in order to ensure images are aligned with each other. Transformation 

of one image to fit another image is accomplished via polynomial equations that are fit to 

the GCP data.  The equations for a first order six-parameter transformation are: 

 

x’ = a0 + a1x + a2y (1) 

y’ = b0 + b1y + b2y (2) 

 

where x and y are reference positions, x’ and y’ are positions on the original image and a0, 

a1, a2, b0, b1 and b2 are parameters representing features such as scale changes in x and y, 

image skew and satellite rotation (Novak, 1992).  The more GCP used in analysis, the 
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higher the polynomial that can be used for aligning the uncorrected image.  Error, 

measured by Root Mean Square Error (RMSE) should be as low as possible (Ton and 

Jain, 1989); 

 

RMSE = ((x’ – x) 2 + (y’ – y) 2)0.5     (3) 

 

where x and y are original co-ordinates of the GCP image and x’ and y’ are calculated co-

ordinates from the original image.  However, it is not always possible to eliminate error 

due to image discrepancies.  Masek et al. (2000) reported satisfactory errors of less than 

0.6 pixels in examining urban change in Washington D.C.  Seto et al. (2002) reported 

pixel errors of 0.3 in a Chinese land use study.   A usual rule is to reduce errors in the 

vicinity of 0.5 pixels or less (Jensen, 1996). 

 

2.3.3 Radiometric Correction 

Radiometric error (‘noise’) can be a result of errors with the sensor itself (Teillet, 

1986) or the composition of the atmosphere between the target and the sensor (Tso and 

Mather, 2001).  These effects distort data to be analysed by the researcher. 

 

Sensor error causing data ‘striping’ (total loss or distortion of data) is corrected 

through processes designed to calculate the value of an affected pixel through the 

examination of surrounding pixels.  Crippen (1989) describes these techniques in greater 

detail. 
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Reducing ‘noise’ caused by atmospheric effects requires the atmospheric 

transmittance to be known: 

 

Transmittance  = 1   − Total % radiation   – (% radiation lost through Rayleigh 

                                        from the sun  scattering, Mie scattering, and 

  atmospheric absorption)           (4) 

 

 

where Rayleigh scattering is caused by molecules with diameter smaller than the size of 

the band wavelength, Mie scattering is caused by molecules with diameter approximately 

the same size as the diameter of the wavelength and where atmospheric absorption is 

caused by larger molecules which absorb the sun’s energy (Tso and Mather, 2001).  Song 

et al., (2001) list several methods for atmospheric correction including Dark Object 

Subtraction (DOS), the Dense Dark Vegetation approach (DDV), the Path Radiance 

approach (PARA) and relative atmospheric correction. 

 

Many studies, both involving individual classifications and land use change 

detection, have employed radiometric normalization in order to improve classification 

accuracy (Mas, 1999; Prol-Ledesma et al., 2002; Seto et al., 2002).  However radiometric 

errors in images are often considered very small (Vogelmann et al., 2001) and some feel 

radiometric normalization is not necessary if images have been properly ground 

processed or their dates of acquisition are similar (Yang and Lo, 2002).   Many studies 

therefore do not include radiometric normalization (Hill, 1999; Ji et al., 2001).  Song et 

al. (2001) state that change detection studies using image differencing do not always 

require atmospheric correction. They suggest that if stable change classes (with zero 
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means) are required by the researcher, atmospheric correction procedures should be 

applied. 

 

2.4 Classification type 

 

Two basic approaches for pixel classification are the unsupervised and supervised 

methods: 

 

2.4.1 Unsupervised classification 

This type of classification is employed when knowledge about the ground cover 

being examined is not known (Lillesand and Kiefer, 2000).  The computer will classify 

each pixel into a pre-defined number of clusters with similar reflectance values.  When 

the operation is complete it is then up to the analyst to determine which land cover is 

represented within each cluster. 

 

2.4.2 Unsupervised classification algorithms 

The Chain method performs clustering based on two examinations of RS data.  

The first analysis examines each pixel in a chain, starting at line 1 pixel 1 and ending at 

the bottom right corner of the image, and creates clusters based on dominant spectral 

statistics.  The second examination selects all those pixels not categorized in the first pass 

and assigns pixels to a cluster based on the minimum distance method outlined in the 

previous section (Jensen, 1996).  Bouvet et al., (2003) used a modified Chain method 

algorithm for analysis of benthic ecosystems in New Caledonia.  While they found results 
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that were satisfactory for visually discriminating different reef types, it was felt a 

supervised classification was needed to distinguish spectral characteristics for further 

analysis. 

 

The Iterative Self-Organizing Data (Isodata) analysis technique algorithm 

examines data through many passes.  It organizes data into a pre-defined number of 

clusters based on parameters set by the researcher.  Aniello et al., (1995) used this 

method successfully for mapping of heat islands in Texas based on band 6 (thermal) 

Landsat TM data.  Yang and Lo (2002) used an Isodata unsupervised classification 

algorithm for urban change detection in Chinese cities, and produced within class 

accuracies of 77% - 94% for six classes. 

 

2.4.3 Supervised Classification 

Supervised classification is a form of pixel classification based on some a priori 

knowledge of the land being classified (Lillesand and Kiefer, 2000).  This knowledge can 

come from personal experience, existing maps, or aerial photographs.  The classification 

procedure is based on the selection of training sites by the researcher.  Training sites are 

evaluated visually and statistically to determine the amount of separability between 

classes.  Examination of correlation matrices and scatter plots provides analysts with 

information detailing which classes are overlapping and which are unique, based on 

training site collection (Table 2.1, Figure 2.1) 
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Table 2.1:  Correlation matrix; Charleston SC 1982 Landsat TM data 

Correlation matrix for ‘Residential’    

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

1 1.00      

2 0.91 1.00     

3 0.92 0.91 1.00    

4 0.40 0.46 0.47 1.00   

5 0.47 0.56 0.64 0.46 1.00  

7 0.66 0.70 0.82 0.43 0.84 1.00 
 

Source: modified after Jensen, 1996 
 

 

 
Figure 2.1:  Scatterplot 1999 UTRCA ETM+ data, channel (Band) 4 vs. channel (Band) 5. 

 

This allows the analyst to examine data and edit training sites so that minimal 

overlap between classes occurs (Jensen, 1996).  Stefanov et al. (2001) acquired multiple 

training sites for each class type with a minimum of 70 pixels per class in an urban 

change study in Arizona.  This allowed for meaningful statistical comparisons.  It is 
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desirable to have a unique normally distributed range of pixels in each training class to 

ensure minimal class confusion (Jensen, 1996). 

 

Hill (1999) performed supervised classifications on Landsat 5 TM images of 

tropical forest types in Peru with accuracies between 100% for general forest cover and 

over 90% for six classes following post classification procedures.  Bianchin and Bravin 

(2003) employed several supervised classification algorithms in an urban land 

classification using Ikonos data, reporting accuracies in the range of 95-97%.  Torres-

Vera et al. (2003) performed supervised classifications in an eight class urban study of 

Mexico City. 

 

2.4.4 Supervised Classification algorithms 

Pixels are assigned to a class based on an algorithm applied to training site data.  

Algorithms commonly used in supervised image classification include Maximum 

Likelihood, Parallelepiped, and Minimum Distance. 

 

The Maximum Likelihood method is more computationally intensive than other 

methods and requires detailed analysis of generated training site statistics, based on the 

equation: 

 

Pc = {-0.5 loge[det (Vc)]} – [0.5 (X-Mc)T Vc
-1]   (5) 
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where Pc represents the probability of pixel X being assigned to class c, det (Vc) is the 

determinant of the covariance matrix Vc, and Mc is mean vector for each class. Many 

studies can be found where Maximum likelihood supervised classifications have been 

undertaken.  Masahiro et al. (2001) utilized a supervised classification with a Maximum 

Likelihood algorithm on a Landsat 5 TM image to map eight vegetation types in 

northeastern Syria with an average accuracy of 85%.  Stefanov et al. (2001) used 

Maximum Likelihood supervised classifications on Landsat 5 TM images to monitor 

urban change in the state of Arizona with overall accuracies of 85%, using 12 classes. 

 

Parallelepiped classifications apply a threshold value to classes based on training 

site data. A pixel will be assigned to class n if its brightness value (BV) falls within the 

range of 

 

Lck < BVijk < Hck          (6) 

 

where c = 1, 2, 3…m classes, k = 1, 2, 3…n bands, BVijk represent an unknown pixel’s 

value in one band and L and H are upper and lower decision boundaries for assignment of 

a pixel with BV to created classes. 

 

Studies sighting the use of this classification on remotely sensed satellite data are 

not common in the literature.  This may be a result of its relative simplicity and the ability 

of faster computers to handle more complex algorithms.  However, Meyer et al. (1996) 
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found this classification algorithm was more successful than the Maximum Likelihood 

method at determining tree species based on digitization of colour photographs. 

 

Minimum Distance algorithms place pixels into created classes based on the 

minimum distance from an unknown pixel’s BV to the mean of training class vectors (ck), 

based on either Euclidian distance or ‘round the block’ calculations: 

 

Dist = ((BVijk – μck) 2 + (BVijl – μcl )2)0.5    (7) 

 

where BVijk and BVijl represent unknown pixel values in two bands (k, l) and μck and μcl 

represent the mean of vector class n for two bands (k, l).  Whichever class mean is 

closest, the unknown pixel is assigned to that class (Jensen, 1996).   This algorithm is the 

simplest common classification algorithm, as it does not take additional information such 

as standard deviation and correlation matrices statistics into account when calculating to 

which class each pixel should be assigned.  It is only concerned with the mean of each 

sample vector (CCRS, 2003). Studies sighting the use of Minimum Distance 

classification are not common in the literature, perhaps due to its simplicity when 

compared to the Maximum Likelihood classification.  Franey (1995) compared several 

classification algorithms, including the Minimum Distance algorithm, in Botswana for 

geological studies. 
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2.5 Selection of bands for use in classification (Feature selection) 

 

Band information from satellite sensors may be redundant.  This is a function of 

the type of ground cover represented in the image.  Feature selection is the process by 

which individual bands are analysed in order to determine which combination of bands 

should be used to be able to best classify the image (Swain and King, 1973).  This can be 

done visually through examination of band n vs. band n scatter plots and histograms to 

determine the amount of band separability.  Statistical applications such as the Jeffreys – 

Matusita or Bhattacharyya distance measures provide values between 0 and 2000 based 

on each band’s separability within each training class, where 0 = complete redundancy 

and 2000 = complete separability (Mausel, 1990).  Combining visual and statistical 

methods of band separability ensures that relevant data for the classification scheme are 

included in the analysis. 

 

2.5.1 Generation of additional image information 

As well as original sensor data, it is possible to perform mathematical operations 

on bands to extract additional information.  Several of these operations will be discussed 

here including: Principal Component Analysis (PCA), the Normalized Difference 

Vegetation Index (NDVI), and image texture analysis.  These processes provide the 

analyst with more information to perform classifications. 
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2.5.2 Principal Component Analysis 

Principal Component Analysis (PCA) reduces the amount of information 

available by discarding data that are highly correlated, creating new unrelated variables. 

The user determines the number of principal components to be created through the 

operation.  The basic concept is to re-align the X and Y axes so they no longer represent 

real data, but represent variance in the original data.  By doing this, it is possible to 

determine where the major principal components (or eigenvectors) lie (Figure 2.2) 

(Ricotta et al., 1999). 

 
Figure 2.2:  Principal components transformation. 

Source: Jensen, 1996 
 

Generally the first eigenvector (PC1) represents around 90% of the variance in any 

satellite data set, with the first three components representing up to 98%.  One or more of 

the principal components may represent certain ground cover features and therefore can 

help in image classification.  Using PCA also reduces the amount of data to be analysed, 

and therefore can reduce a study’s time and memory requirements (Jensen, 1996). 
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Bouvet et al. (2003) used PCA in their study of New Caledonia in order to reduce 

data processing requirements.  They found the first three components accounted for 98% 

of data variance, with PC1 accounting for 90%. 

 

2.5.3 Normalized Difference Vegetation Index (NDVI) 

 

The NDVI is designed to measure the amount of biomass within a scene.  It is a 

normalized ratio between the near infrared and green visible components of an image, 

based on the amount of photosynthetic (green) material in each image pixel.  In TM and 

ETM+ datasets it is generated using the following equation; 

 

NDVI = (Band 4 - Band 3) / (Band 4 + Band 3)   (8) 

 

High values of NDVI indicate high levels of biomass, whereas areas low NDVI 

levels are associated with low levels of green material (Masek et al., 2000).  Being able to 

distinguish areas of high NDVI with those of low NDVI can help with image 

classification.  Stefanov et al. (2001) used an index similar to the NDVI – the Soil 

Adjusted Vegetation Index (SAVI) - as the base for selection of training sites in a 

supervised classification of regions of Arizona using Landsat TM data.  By using the 

vegetation index they were able to separate types of vegetation without having a priori 

knowledge. 
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NDVI differencing is also a very useful technique for change detection studies.  

Being able to determine where areas of high NDVI have converted to areas of low NDVI 

is a means of highlighting urban change as green spaces are replaced with urban areas.  

Forsythe (2002a) used NDVI differencing in order to determine urban change in major 

Canadian cities.  Torres – Vera et al. (2003) used two NDVI differencing approaches for 

determining urban change in Mexico City. 

 

2.5.4 Texture analysis 

Texture analysis attempts to add definition or a distinct boundary to pixels with 

similar features that might be part of the same land cover category.  There are various 

algorithms available to compute texture features, but the basic principles apply to all.  A 

window, of size defined by the user, is passed over the image.  The centre pixel value is 

compared to the surrounding pixels and the average is computed.  In this way similar 

regions can be highlighted and image classifications can be made easier (Jensen, 1996). 

 

Shaban and Dikshit (2001) compared various texture algorithms of differing 

window size in an urban classification study in India. They found a SPOT band3 

homogeneity algorithm, with a 7 x 7 window, worked best for isolating urban features in 

the Indian city of Lucknow.  Improvements were much higher for homogeneous classes 

than for heterogeneous classes.  Heterogeneous land features (wetlands for example) are 

much harder to define as there are many types of ground cover found within these 

features (Harvey and Hill, 2001).  Homogenous regions, such as defined agricultural 
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fields or urban areas, are easier to isolate as spectral characteristics are relatively uniform 

within these features. 

 

2.6 Change detection 

 

Change detection studies require the above-mentioned areas to be considered as 

well as several other considerations, to ensure the later band differenced image is as 

accurately classified as possible.  Image resolutions must be identical for real change to 

be detected (Jensen, 1996).  This may require re-sampling of an image in order to alter 

pixel sizes – i.e. reducing from 30.0m pixels to 28.5m pixels.   Re-sampling can be done 

through software applications such as ‘re-project’ or through the previously mentioned 

GCP procedure (Masek et al., 2000). 

 

Temporal resolutions must also be around the same time of year and same time of 

day in order for change detection to be valid. Comparing a summer and winter image 

does little to show change in agriculture, as spectral characteristics will be different and 

ground cover type will not be uniform – i.e. leafy vegetation (summer) vs. bare 

vegetation (winter).  Comparing an image taken at 7am vs. an image taken at 3pm will be 

problematic due to effects such as shadow and radiation differences (Jensen, 1996). 

 

Masek et al. (2000) compared images over a 25-year period, with all acquired in 

the April to October range.  Yang and Lo (2002) also compared images over a 25-year 

time period, using images from between April and July.  They point out it is often 
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difficult to obtain cloud free images which represent the desired scene, possibly hindering 

change detection studies.  There are many different techniques available to the researcher 

for determining change (Table 2.2). 

 

Table 2.2:  Change detection methods 

Change detection methods 

Write function memory insertion 

Multi-date composite image change detection 

Image algebra change detection (Band differencing or Band ratioing 

Post-Classification comparison change detection 

Multi-date change detection using a binary mask 

Multi-date change detection using ancillary data source as date 1 

Manual, on screen digitization of change 

Spectral change vector analysis 

Knowledge-based vision systems for detecting change 

Source: modified after Jensen, 1996 

 

Post classification analysis requires the user to classify an image into a desired 

land use scheme, and then subtract the older image from the newer image(s).  It is the 

most common change detection technique, but is prone to errors.  Any error associated 

with the original classifications is compounded, requiring very precise initial 

classifications. Ridd and Liu (1998), Yang and Lo (2002), and Torres-Vera et al. (2003) 

did not use post classification change detection techniques because of the possibility of 

compounding errors from their original classifications.  However the major advantage of 

this technique is being able to determine ‘to-from’ change, which is not possible with 

many other change detection methods (Jensen, 1996). 

 

Band differencing involves subtraction of the latter year’s band n from the newer 

year’s same band (i.e. band2 1999 - band2 1991, etc…).  Examination of BV will 
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determine if change has occurred (Jensen, 1996).   This type of change detection is not 

useful for determining ‘to-from’ change, but can produce very accurate change maps.  

Ridd and Liu (1998) in a comparison of four change detection algorithms (band 

differencing, image regression, tasseled cap change, and a chi-square method) found 

band2 differencing produced the highest accuracies in a change detection project in Salt 

Lake City. 

 

2.7 Accuracy assessment 

 

Whether performing image classification or a change detection study, it is critical 

that the accuracy of the results be determined. By placing a random number of points on 

a classified image and comparing them to reference data, it is possible to see which pixels 

have been misclassified and produce statistics that reveal any misclassification.  A 

general rule is to have at least 50 points per class and for larger datasets at least 100 

points (Congalton, 1991).  Generation of these statistics is arrived at through the creation 

of an error matrix with the classified image pixels represented on one axis and a reference 

dataset represented on the other (Table 2.3). 

 

Table 2.3: Example confusion matrix 

  Reference Data   

  Forest Not Forest No Data Total 

 Forest 154 1 0 155 

Classified Not Forest 47 297 0 344 

Data No Data 0 1 0 1 

 Total 201 299 0 500 
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The reference dataset could be the initial image, a set of GPS points of known 

ground cover, or an accurately created map. Four statistics are generally available for 

determining classification accuracy. Overall accuracy represents the total number of 

pixels correctly classified vs. incorrectly classified.  Jensen (1996) feels this measure 

alone is not enough to determine whether a study is accurate as individual class 

accuracies can vary.  The results can be better interpreted by looking at the producer’s 

(omission) and user’s (commission) accuracies in the error matrix.  Producer’s 

accuracies show when a pixel has been assigned to the incorrect class while user’s 

accuracies show when a pixel has not been assigned to the correct class, based on the 

reference data. For example; if pixel X is classified as ‘Forest’ when it is in fact ‘Not 

Forest’ (according to the reference data) two errors have occurred: a) the class ‘Forest’ is 

gaining pixel X (which it should not), and b) class ‘Not Forest’ does not obtain pixel X 

(when it should).  A fourth measure of accuracy is known as the Kappa statistic.  Like 

overall accuracy this compares total numbers of pixels accurately and inaccurately 

classified, but also takes into account off-diagonal values in the error matrix.  Therefore 

Kappa statistics are often lower than overall accuracy statistics.  Congalton (1991) feels 

all statistics should be analysed to determine accuracy of classification.  If the accuracies 

produced are not satisfactory data must be re-examined and more accurately classified. 

 

Yang and Lo (2002) sight both Kappa and overall statistics to determine accuracy 

of their study.  Harvey and Hill (1999) use overall accuracy, producer and user statistics 

to validate their study on wetland vegetation classification in Australia.  Ridd and Liu 
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(1998) compare Kappa and overall statistics in a comparison of land use change detection 

algorithm accuracies.  

 

The newer image in band differenced urban change detection studies should be 

classified as accurately as possible (Yang and Lo, 2002) to be able to discern where ‘real’  

urban change has occurred as opposed to change in agriculture from green to fallow or 

tilled field (Griffiths, 1988 as found in Masek et al., 2001). Few published urban change 

detection studies cite final overall accuracies lower than 80% and few cite within-class user 

and producer statistics less than 80%.  Stefanov et al. (2001) had overall accuracies of 85% 

with within-class user’s accuracies of 49% to 99% in an Arizona urban change detection 

study.  Lower accuracies were considered unsatisfactory and are thought to be a result of 

spectral confusion.  Seto et al. (2002) in a Pearl River Delta study reported overall 

accuracies of over 93%.  Within class user’s accuracies of 51% - 100% were reported in 

nine classes.  Again, the lower accuracies were considered unsatisfactory. 
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Chapter 3: Methodology 

 

 

 Several steps were necessary in order to create an urban development file including 

data preparation, image classification, and change detection. 

 

3.1 Data preparation 

 

3.1.1 Image sub-setting 

Initial images covered areas much larger than the UTRCA.  Images had to be subset 

to fit the perimeter of the conservation authority, using the ‘subset’ tool in PCI v 9.0 (PCI, 

2003).  The 1999 image does not cover the entire western portion of the UTRCA, however 

this was not considered problematic as all major urban centers are within this image 

(Figure 3.1). 

 

3.1.2 Radiometric correction 

No radiometric procedures were applied to any images.  Following Song et al. (2001) 

it was felt radiometric errors were minimal and did not require any correction for this urban 

change detection study.  Radiometric normalization of an image creates a file much larger 

than its initial size, which can impede computing efficiency. 
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Figure 3.1: 1999 UTRCA Image. Bands 3, 2 and 1. 

 

3.1.3 Geometric rectification 

The 2000 image was previously orthorectified to the UTM Zone 17, (NAD83 

GRS1980) coordinate system by Natural Resources Canada and then ‘Pansharpened’ (PCI, 

2003) to a 15-metre spatial resolution with PCI Geomatica v. 9.0 software. The resulting 
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image was then used as the reference image for placement of Ground Control Points (GCP) 

for disk-to-disk registration. Each of the 1991 and 1999 images were rectified to the 2000 

image using 25 GCP with total RMSE of less than 0.25 pixels.  This procedure re-sampled 

the 1991 and 1999 data to 15m pixels. 

 

3.2 Image classification 

Various parameters were considered in order to classify the 1999 image.  These 

included classification scheme, feature selection, classification type and accuracy 

assessment. 

  

3.2.1 Classification scheme 

Four classes were chosen for this study: 

Urban – represents all pixels considered ‘human-made’, including city buildings, 

residential areas, commercial areas, farm houses, roads and construction (excavated) areas. 

 

Greenspace – represents all pixels deemed to be ground cover that is not ‘developed’ 

including all fields, forests and wetlands. 

 

Water - represents all pixels associated with water, including lakes, ponds, rivers, and 

streams. 

 

No data – represents all pixels with no data values.  These were not present in the 1991 

image, but were found in the 1999. 

 

More classes may have been desirable, but as the study is only concerned with 

urban development (no matter what type) in the UTRCA, this simple classification 

strategy was employed.  Within this classification scheme are land cover types which can 

be considered both urban and greenspace, such as golf courses.  While golf courses are 

‘green’, they are of certain importance to OCA as they consume large amounts of water 
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and introduce pollutants into the water table.  Golf courses being built in 1999 were 

included in the urban class within the UTRCA due to reflectance values for excavated 

lands being considered ‘developing’.  However, golf courses in existence were classified 

as greenspace.  This does not affect this study severely, as golf courses being built are 

considered a ‘human – induced’ change on the surrounding environment, and therefore 

fall within the definition of the ‘urban’ class as found above.   

 

3.2.2 Feature selection 

Certain features were calculated for each image in order to help distinguish urban 

developed land cover from other land cover types.  These included Principal Component 

Analysis (PCA), a Normalized Difference Vegetation Index (NDVI) and a Texture feature. 

 

Principal Component Analysis: 

The first three Principal Components (PC) were calculated for the 1999 image.  

These amounted to approximately 99% of the total variability in the data for both images 

(Table 3.1).  Upon visual inspection, it was determined that PC3 coincided best with urban 

features found in the UTRCA (Figure 3.2).   Therefore this feature was included in 

subsequent classifications of the 1999 data. 

 

                                                 Table 3.1:  PCA analysis for 1999 
PCA 1 Variance 81.50% 

PCA 2 Variance 13.93% 

PCA 3 Variance 3.42% 

Total Variance 98.85% 
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Figure 3.2: PCA 3 1999 UTRCA Image 

 

Normalized Difference Vegetation Index: 

The NDVI calculates a ratio of the amount of biomass present in an image and is 

used in urban change detection studies to help separate ‘green’ (light) from ‘not green’ 
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(dark) as in figure 3.3. NDVI was included in classification of the 1999 image as it was felt 

it helped distinguish urban and greenspace ground cover. 

 
Figure 3.3: NDVI 1999 UTRCA Image  
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Texture: 

Determining ‘boundaries’ to help isolate urban features was aided using a texture 

measure.  There are many texture algorithms available to the analyst - based on the input of 

one band or feature from the dataset (Table 3.2). 

 

The same algorithm and window parameters were applied to the 1999 Landsat 

image as in the Shaban and Dikshit (2001) study, with unsatisfactory results.  This is not 

surprising considering different satellite platforms were used.   Various combinations of 

band input, window size and algorithm were applied until a PCA 3 homogeneity 

algorithm with a 5 x 5 window was applied.  It was felt this texture measure best 

separated urban and non-urban features in the UTRCA (Figure 3.4). 

 

Table 3.2:  Texture algorithms  
                                               GLDV = grey level difference vector 

Texture Measure Algorithms PCI v. 9.0 

Homogeneity Correlation 

Contrast GLDV Angular Second Moment 

Dissimilarity GLDV Entropy 

Mean GLDV Mean 

Variance GLDV Contrast 

Entropy Inverse Difference 

Angular Second Moment   

 

 

3.2.3 Unsupervised classification 

A total of 255 classes were created using the Kmeans algorithm in PCI v. 9.0.  

Created classes were then aggregated into the desired classification scheme (Figure 3.5).  
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The combination of bands and features that produced the highest urban accuracy was of 

ETM+ Bands 1-5 and 7, plus PCA 3, NDVI, and the 5 x 5 homogeneity texture measure.   

 

 
Figure 3.4:  Texture analysis for 1999 UTRCA Image; 

Homogeneity (PCA 3) - 5 x 5 window.  
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Major error resulted due to misclassification between urban and agriculture land 

cover, included in the greenspace class. Entire fields and single pixels were incorrectly 

classified as urban (Figure 3.6).   

 
Figure 3.5:  Kmeans class aggregation for unsupervised classifications 

1999 UTRCA dataset  
 

 

  
Figure 3.6:  Urban confusion with greenspace.  Unsupervised classification ETM+ Bands 1-5, 7, +  

PCA 3 + NDVI + 5 x 5 Texture measure of 1999 UTRCA dataset.  Red arrows indicate an agricultural  
field classified as urban. 
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This is further seen through comparison of producer and user statistics (Table 3.3) and 

examination of the confusion matrix for the ETM+ Bands 1-5 and 7, plus PCA 3, NDVI, 

and the 5 x 5 homogeneity texture measure unsupervised classification (Table 3.4). 

 

Table 3.3:  Accuracies for ETM+ Bands 1-5 and 7, PCA 
3, NDVI, and 5 x 5 Texture measure unsupervised 

classification of the 1999 UTRCA dataset 

Overall Accuracy 77.2%  

Overall Kappa 0.631  

 Producer's User's 

Greenspace 92.2% 70.3% 

Water 66.3% 93.8% 

Urban 65.3% 86.7% 

No Data 0% 0% 

 
 
 

Table 3.4:  Confusion matrix for ETM+ Bands 1-5 and 7, PCA 3, NDVI, and 5 x 5 Texture 
measure unsupervised classification of the 1999 UTRCA dataset 

 Reference Greenspace Water Urban No Data Total 

 Greenspace 201 22 64 0 287 

Classified Water 2 61 2 0 65 

 Urban 15 4 124 0 143 

 No Data 0 5 0 0 5 

 Total 218 92 190 0 500 

 

 

High numbers of ‘greenspace’ pixels classified as ‘urban’ equate to low urban 

producer’s accuracies as classified urban pixels are not are being assigned to this class, 

based on the reference data.  Producer’s accuracies for the greenspace class are very high 

as few pixels that are not ‘green’ are being classed as green.  These errors were consistent 

throughout all unsupervised classifications; therefore it was decided to abandon this 

method of classification. 
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3.2.4 Supervised classification 

Supervised classifications were successful at producing an acceptably classified 

image, as similar studies have shown (Stefanov et al., 2001; Prol-Ledmesma et al., 2001; 

Bianchin and Bravin, 2003; Torres-Vera et al., 2003). Three parameters were examined 

in order to achieve a desired classification: selection of bands used for classification, 

choice of algorithm, and training site evaluation. 

 

It was decided the combination of ETM+ bands 1-5 and 7, plus PCA 3, NDVI, and 

the 5 x 5 homogeneity texture measure would be utilized as they provided the best results 

for the unsupervised classifications. Initially only four classes were included for 

classification with many small training sites for each class (Table 3.5). 

 

         Table 3.5:  Initial training site criteria 

Class Training Sites 

Greenspace 25 

Water 15 

Urban 20 

No Data 1 

 

 

Training sites were selected based on visual interpretation of ETM+ bands 3, 2, 

and 1 for pixels representing forest, urban, and water, and with the NDVI for identifying 

all types of agricultural fields (‘green’ vs. ‘fallow’).  After several iterations using the 

popular Maximum Likelihood algorithm with poor visual results, it was decided to switch 

to the Minimum Distance algorithm, which immediately improved results (Figure 3.7).  It 

is possible  to preview  supervised  classifications  in  PCI  before  classifying  the image,  
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Maximum Likelihood supervised classification  

 

 
Minimum Distance supervised classification, training sites as in table 3.6 

 
Figure 3.7:  Initial supervised classification, UTRCA 1999 dataset.  

Green = greenspace, white = urban and blue = water  
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allowing for visual comparison between different classifications.  Therefore only 

accuracy statistics for the final supervised classification are presented. 

 

Although results were better with the Minimum Distance classification, they were 

not acceptable.  Figure 3.8 shows the high degree of overlap in spectral response between 

‘greenspace’ and ‘urban’ classes, which resulted in many urban regions being classified 

as ‘greenspace’, and vice versa. 

 

 
Figure 3.8:  Scatterplot ETM+ Channel (Band) 3 vs. Channel (Band) 4 UTRCA 1999 dataset.  

 

One reason for changing to a Minimum distance algorithm was it was found easier 

than the Maximum likelihood method to edit training sites for pixels with very similar 

reflectance values that represent different land cover classes i.e. ‘urban’ vs. ‘green’.  

Editing was attempted for the above classification through addition of training sites 

directly where class confusion had occurred.  The cumulative addition of 50 new training 
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sites per class made for a classification that confused urban and agricultural features.  To 

attempt to solve these problems two new classes were created to help distinguish areas of 

urban and greenspace confusion.  By placing training sites directly on regions known to 

be urban but classified as agriculture (and vice versa) it was hoped spectral confusion 

would be reduced.  This helped increase the accuracy of the classification, but was still 

not acceptable.  The new classes’ spectral response fell between the original classes of 

‘urban’ and ‘greenspace’, continuing with the pattern of spectral confusion between the 

two main classes (Figure 3.9). 

 

 
Figure 3.9:  Scatterplot ETM+ Channel (Band) 3 vs. Channel (Band) 4 UTRCA 1999 dataset. 
As in figure 3.8 with the addition of two ‘confusion’ classes; pink = greenspaces that are not 

urban and light blue (no ellipse) = urban lands that are not greenspace 

 

 

Confusion between urban and greenspace classes was a result of each individual 

class being too large, resulting in spectral overlap. To correct this it was decided to 
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attempt a Minimum Distance classification using 17 classes with three small training sites 

for each, which would isolate different land cover types.  Again, ETM+ Bands 3, 2, l and 

the NDVI were used to discriminate between various land cover types.  ‘Dark’, ‘Middle’ 

and ‘Light’ NDVI agricultural fields were found in the northern, central, and southern 

sections of the UTRCA and were each considered a separate class, for a total of nine 

agricultural classes.  Training sites for forested areas were chosen based on forested 

locations in northern and southern regions, and a known wetland in the northeastern 

portion of the UTRCA.  Urban regions were chosen based on the location of pixels 

representing what was thought to be ‘City Centre’, ‘Residential’ and ‘City Outskirt’ 

regions (Table 3.6).   

 
Table 3.6:  Revised Training site strategy 

Class Training Sites Class Training Sites 

Dark Field North 3 Wetland 3 

Dark Field Middle 3 Forest North 3 

Dark Field South 3 Forest South 3 

Middle Field North 3 City Outskirts 3 

Middle Field Middle 3 Residential 3 

Middle Field South 3 City Centre 3 

Light Field North 3 Water 3 

Light Field Middle 3 No Data 1 

Light Field South 3   

 

 

This greatly improved results, as it was much easier to distinguish urban and non-

urban features (Figure 3.10).  To help improve mapping characteristics, all areas of the 

image that were not part of the study area were removed.  This required the use of a 

bitmap mask created in PCI Geomatica Focus to highlight all those areas that are outside 

the  boundaries  of  the  UTRCA  and  discard  them  from  classification.  Fields  being  
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Figure 3.10: Modified Minimum Distance supervised classification from Table 3.6.  Yellow colours = 

agricultural fields, green colours = forested land and grey colours = urban land. 

 

confused with urban features was still a problem, as not all pixels were accurately 

classified (Figure 3.11).   

 

3.2.5 Accuracy assessment  

Accuracy assessment proved initially difficult for this study as an adequate number 

of points was required for each class represented (Jensen, 1996).  Placing a random sample 

of  500  points  over  the  region  indefinitely  meant  a higher number of points were being 
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Figure 3.11:  Final classification preview – bitmap mask applied.  UTRCA 1999 dataset  

 

 

assigned to the greenspace class which dominates the image as compared to an 

insufficient number of points assigned to the urban and water classes, which each 

represent a small portion of the UTRCA.  Therefore the following sampling strategy was 
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decided on: 200 points ‘greenspace’, 200 points ‘urban’ and 100 points ‘water’.   This 

was accomplished using the EASI Modeling function in PCI Geomatica Focus where 

individual classes can be converted to individual image channels.   It was then possible to 

stratify a point sample over all pixels of a particular classification.  Each sample was then 

merged together to form one 500 point sample for the entire image, guaranteeing the 

desired number of sample points were present in each class. The sampling strategy was 

somewhat modified for the final classification after the bitmap had been applied.  The 

classes were then more equally represented (Figure 3.12).  Tables 3.7 and 3.8 show an 

overall classification accuracy of 87% with no within-class producer or user accuracy 

statistics below 80%. 

 

3.3 Change detection 

 

3.3.1 Band differencing 

Following Ridd and Liu (1998) band2 differencing was chosen as the optimum 

method for determining urban development in the UTRCA.  This was done through 

subtraction of 1991 band2 values from 1999 band2 values, using the Image Arithmetic 

Algorithm in PCI Xpace.   

 

The resulting development image had brightness values (BV) in the range of 44 – 136.  It 

was determined through visual analysis the range of 44 – 89 was synonymous with urban 

development (green in 1991 to urban in 1999).  These values also coincided with many 

agricultural fields, which were green in 1991 and tilled or fallow in 1999 (Figure 3.13).   
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Figure 3.12:  Example stratified sample for each individual class merged into one 500 point sample  
 

Table 3.7:  Minimum distance final classification accuracies  
UTRCA 1999 dataset 

Overall Accuracy 87.20%  

Overall Kappa 0.797  

 Producer’s Accuracy User’s Accuracy 

Greenspace 94.7 80.5 

Water 80.1 91.3 

Urban 82.3 98.8 

30 km 

N 
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Table 3.8:  Minimum distance final classification confusion matrix UTRCA 1999 dataset 

 Reference Greenspace Water Urban No Data Total 

 Greenspace 198 14 34 0 246 

Classified Water 1 80 0 0 81 

 Urban 10 5 158 0 173 

 No Data 0 0 0 0 0 

 Total 209 99 192 0 500 

 

 
Figure 3.13: Urban and agricultural change, Band2 differencing UTRCA 1999 – 1991.  The yellow 

circle = actual urban development and the purple circle = green areas deemed as ‘developed’. 

 

Currently methods for assessing urban change are considered fairly well developed.  

However, the detection of different types of change – for example greenspace to 

excavated or excavated to fully developed – are not very common in the literature. 

Research in this area is ongoing and as a result, no attempts were made to classify the 

development data in this way. 

 

500 m 
N 
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3.3.2 Geographic Information System (GIS) Analysis  

Classified and development images created in PCI were exported into ArcGIS 8.3 

for GIS analysis.  Each class in the classified image was separated into individual ‘urban, 

‘greenspace’ and ‘water’ shapefiles.  In order to separate agricultural fields deemed as 

‘developed’ from real urban development an overlay function was applied between the 

‘urban’ and ‘developed’ shapefiles.  This is where accurate classification of urban regions 

is crucial, as any ‘change’ pixels which fall on an incorrectly classified agricultural field 

(i.e. a field which has been classified as urban) will be shown as ‘urban development’ 

following the overlay process.  This process eliminated a number of ‘developed’ 

agricultural fields, but many were still present due to error in urban classification from 

the previous supervised classification process.   

 

Post classification editing was performed through comparison of the remotely 

sensed urban development data with 35cm resolution aerial photographs of the UTRCA 

acquired from April 18 - 21, 2000.  The development shapefile was overlaid onto the 

photographs and any ‘development’ pixels found in a ‘greenspace’ region were deleted.  

It was felt that any classified urban areas located away from major centres could not have 

reverted from urban to greenspace in the 8-month time period between the acquisition of 

the 1999 Landsat image and the air photos.  Development accuracies were recalculated 

following post classification editing.  Classification accuracies improved in all three 

classes as found in tables 3.9 and 3.10. 

 

 

 



 50 

 
Table 3.9:  Minimum distance final classification accuracies with ortho-photo editing 

UTRCA 1999 dataset 

Overall Accuracy 90.8  

Overall Kappa 0.856  

 Producer's User's 

Greenspace 97.5% 84.2% 

Water 88.0% 98.9% 

Urban 85.7% 95.6% 

 
 

 
Table 3.10:  Minimum distance final classification confusion matrix with ortho-photo editing 

UTRCA 1999 dataset 

 Reference Greenspace Water Urban No Data Total 

 Greenspace 192 8 28 0 228 

Classified Water 0 88 1 0 89 

 Urban 5 3 175 0 183 

 Total 197 99 204 0 500 
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Chapter 4:  Result and Discussion 

4.1 UTRCA Urban development, 1991 – 1999 

 

Over the period 1991 to 1999, 17.36 km2 of urban land was developed or added in 

the UTRCA.  No distinction has been made between the type of development (i.e. ‘new 

urban’, ‘industrial’ etc…).  Summary population and development statistics for each 

urban region are presented in Tables 4.1 and 4.2. The majority of development activity 

occurred in or around urban centres within the UTRCA (Figure 4.1).   

Table 4.1: UTRCA urban region population statistics 

 Population   Percentage Change 

Region Name 1991 1996 1999* 2001 91-96 96-01 91-99# 
91-99 / 

year 

London CMA 381522 416546 426089 432451 4.50 3.80 10.46 1.31 

London CSD 303165 325669 332191 336539 6.91 3.23 8.74 1.09 

Woodstock  30075 32253 32738 33061 6.70 2.50 8.13 1.02 

Stratford  27666 29007 29408 29676 4.80 2.30 5.92 0.74 

Ingersoll  9378 9849 10526 10977 5.00 4.50 10.90 1.36 

St Marys 5496 5952 6157 6293 8.30 5.70 10.73 1.34 

Mitchell 3382 3670 3881 4022 8.50 9.60 12.86 1.61 

* based on the formula: ((2001pop -1996pop/5)*3) +1996pop 
#from 1999 population, formula: ((1999pop -1991pop)/1999pop)*100 

Source: Statistics Canada, 2003 

 

Table 4.2:  UTRCA development statistics 

  Development    

Region Name 
Size, 2003 

(km2) 
1991 - 1999 

(km2) 
Development/year 

(km2) 
Change 

(%) 
Change/year 

(%) 

London CMA 1042.95 10.39 1.30 1.00 0.12 

London CSD 424.56  7.59 0.95 1.79 0.22 

Woodstock 30.60  0.55 0.07 1.80 0.23 

Stratford 22.09  0.66 0.08 2.97 0.37 

Mitchell 13.22  0.43 0.05 3.23 0.40 

Ingersoll 12.99  0.29 0.04 2.23 0.28 

St Marys 12.61  0.65 0.08 5.14 0.64 

BLQ 49.01  2.49 0.31 5.07 0.63 
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Figure 4.1: UTRCA urban developments, 1991 – 1999  

 

Urban region development is almost entirely found within the urban boundaries as 

defined by Statistics Canada whereas what is thought to be construction/industrial 

development, based on visual analysis of the 35cm orthophotos and the development file, 
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is predominantly found outside urban polygons, with the exception of the London Census 

Metropolitan Area (CMA) and the St. Marys Census Sub Division (CSD). 

 

4.1.1 London (Census Metropolitan Area and Census Sub Division) 

CMAs are defined as having an urban core population of over 100000 with 

adjacent municipalities having a large degree of integration with the urban core (Statistics 

Canada, 2003).  Not all of the London CMA is inside the UTRCA, but the urban core is 

found within the conservation authority.  During the study period, the calculated London 

CMA population growth was 10.5%, or 1.31%/year. London’s CMA urban development 

totalled 1% (10.39 km2) or yearly growth of 0.12% (1.30 km2/year) of the developed 

urbanized area as a percentage of the urban polygon found within the UTRCA during the 

study period (Figure 4.2).   

 

The majority of London’s CMA development is found in the periphery of the 

city’s urban core, especially in northeastern areas surrounding the Fanshawe 

Conservation Area.  London’s development accounts for over half of UTRCA 

development during the study period.  London’s urban development was concentrated in 

the London CSD.  CSDs are defined as a municipality by Statistics Canada (Statistics 

Canada, 2003).  Total urban CSD growth over the study period was 1.79% (7.59 km2), or 

0.22%/year (0.95 km2/year).  London CSD population growth for the same period was 

calculated at 8.74% or 1.1 % yearly.  
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Figure 4.2: London urban development, 1991 – 1999  

 
 

 

4.1.1 Woodstock (Census Agglomeration) 

 

Woodstock is the second largest urban area in the UTRCA. It is considered a 

Census Agglomeration (CA) by Statistics Canada – an urban area with a core population 

of at least 10000 and surrounding municipalities that interact with this core (Statistics 

Canada, 2003).  Woodstock’s population grew by 8% over the study period at a yearly 

rate of 1.02%, while urban development was found to be 1.8% (0.55 km2) of the urban 

region (Figure 4.3).  This equates to yearly development at a rate of 0.23% (0.07 

km2/year). Development primarily occurred along the western and southern portions of 

the CA.  Southern development might be due to the proximity of Highway 401, which 

connects Montreal to Windsor, via Toronto.  Fully one half of Ontario’s population lives 
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along this corridor (ASG, 2002).  Eastern development may be a result of proximity to 

Toronto, Canada’s largest city. 

 

 
Figure 4.3:  Woodstock CA urban development, 1991 - 1999  

 

4.1.2 Stratford (Census Agglomeration) 

Stratford experienced the lowest population growth of any UTRCA urban region 

over the study period at 5.92% or 0.74%/year.  However this did not affect urban 

development as a total increase of 2.97% (0.66 km2) or 0.37%/year (0.08 km2/year) was 

observed (Figure 4.4).  These figures are much higher than London and Woodstock, as a 

percentage of the urban area.   Expansion was predominantly found on the periphery of 
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the CA, especially in the southern areas.  This may be due to the close proximity to 

London, Ontario, and Highway 401.  

 

 
Figure 4.4:  Stratford CA urban development, 1991 - 1999  

 
 

 
 

4.1.3 Ingersoll (Census Sub Division) 
 

Ingersoll’s population is too small to be considered a CA, so it is considered a 

Census Sub Division (CSD). Ingersoll’s population grew by 1.36%/year over the study 

period for a total increase of 10.9%.  Total urban development was calculated as 2.23% 

(0.29 km2) or 0.28%/year (0.04 km2/year). The majority of development occurred in the 

southwestern sections of the municipality, which are closer to London (Figure 4.5). 
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Growth in northeastern portions may be related to the Beachville Lime and Quarry 

industrial site (BLQ), which is found directly to the northeast of Ingersoll. 

 

 
Figure 4.5:  Ingersoll CSD urban development, 1991 – 1999  

 

 

4.1.5  St. Marys (Census Sub Division) 

St. Marys is considered a CSD by Statistics Canada.  St. Marys population grew 

by 10.73% over the study period (1.34%/year), and its urbanized region grew by 5.14% 

(0.65 km2) - the highest of any UTRCA urban region – at a rate of 0.64%/year (0.08 

km2/year).  Development took place predominantly in the southern regions of the CSD 

(Figure 4.6).  Some of this growth may be attributed to the presence of a large pre-

existing industrial area in the southwestern regions of the CSD.  Significant urban 
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development in the southeastern region of the CSD was not present in 1991 and was 

present in 1999. 

 

 
Figure 4.6:  St. Marys CSD urban development, 1991 – 1999  

 

4.1.6 Mitchell 

Mitchell is the smallest of the six urban regions studied and does not qualify as a 

municipality or a region.  Therefore a polygon was created which encompassed what was 

thought of as the ‘Town of Mitchell’ prior to analyzing where urban development 

occurred.  When ‘development’ was overlaid, it was found to be completely within the 

created polygon.  Mitchell’s population grew faster than any urban region in the UTRCA 

at 12.86% over the study period or 1.61%/year.  Urban development was calculated at 
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3.23% (0.43 km2) of the study area, which average 0.24%/year (0.05 km2/year) (Figure 

4.7). Major development occurred to the southeast of the urban core, with other 

significant development in the northwest of the area. 

 

 
Figure 4.7:  Mitchell urban development, 1991 – 1999  

 

4.1.7 Pre-existing construction sites not found within urban polygons 

Some UTRCA development occurred at sites away from urban centres, thought to 

be construction and industrial sites, and has been counted as urban development within 

the UTRCA.  BLQ is a large industrial development found to the northeast of Ingersoll 

and west of Woodstock and represents a large portion of UTRCA development (Table 
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4.2). Regions such as BLQ represent a mix of urban development encroaching on green 

areas and continuing existing development from 1991.   

 

 
Figure 4.8:  BLQ development: actual development and change in BV intensity  

 

 

4.2 General Development Patterns  

 

London’s growth of 1.30km2/year is in line with other studies concerning Ontario 

urban development over the same time period.  Forsythe (2002b), using a band2 

differencing approach, found the Toronto CMA grew by 9.45km2/year for the period 

1990-2000.  Toronto is approximately ten times the size of London (Statistics Canada, 

2003), which makes the London figure reasonable.   
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The UTRCA’s smaller urban centres are generally growing faster than the 

region’s larger urban areas.  Mitchell had the highest population growth at over 12% 

during the study period, and also recorded the second highest development growth.  St. 

Marys experienced the highest development growth of any urban region within the 

UTRCA and had population increases of over 10% during the study period, third highest 

among the six regions studied.  These two regions (with the lowest populations) are 

developing lands at a yearly rate of over 13m2/capita, well above any other urban areas 

within the UTRCA; yearly per capita development was highest at 13.85m2/year in 

Mitchell (Table 4.3).     

Table 4.3: Development statistics per Capita 

Urban Region 
Development/Capita 

in m2 
(Development/Capita) 

/year in m2 

London CMA    24.38   3.05 

London CSD     22.85   2.86 

Woodstock   16.80   2.10 

Stratford   22.44   2.81 

Mitchell 110.79 13.85 

Ingersoll   27.55   3.44 

St Marys 105.58 13.20 

 

The three largest urban areas within the UTRCA experienced the region’s lowest 

growth and development.  Stratford and Woodstock experienced the lowest population 

increases, at 5.92% and 8.13% respectively.  The London CMA had a population growth 

rate of 10.46% during the study period, while the London CSD, which contains the city’s 

urban core, only grew by 8.74%.  Development figures in the three urban areas of 

London, Woodstock, and Stratford were the lowest in the UTRCA.  London CMA yearly 

development was 3.05 m2/capita, and was the highest of the three largest urban areas: 

2.1m2/capita in Woodstock and 2.81m2/capita in Stratford.     
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4.3 Examples of Landuse Development 

 

There are many types of growth that can be seen within the UTRCA. While no 

attempt was made here to classify them separately, some examples of the success of the 

classification procedure can be examined. Figures 4.9 and 4.10 outline different types of 

development in and around Mitchell.  Figure 4.9 represents a change from greenspace into 

an urban feature (an industrial warehouse and storage area).  Figure 4.10 demonstrates 

urban change in the form of a residential development on the northwestern edge of 

Mitchell.   

Figure 4.9: Warehouse and storage development, 1991 – 1999; Southeast Mitchell. 
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Figure 4.10: Residential development, 1991 – 1999; Northwest Mitchell 
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Chapter 5:  Conclusion 

 

Urban development within the UTRCA was determined from analysis of Landsat 

TM and ETM+ images.  Using a combined band2 differencing and supervised image 

classification method, urban development was determined to be 17.36 km2 from 1991 to 

1999.  The majority of development was concentrated in six UTRCA urban centres. 

Overall classification accuracy was 90% with no within class producer’s or user’s 

accuracy statistic below 84%. 

 

Development during the study period generally occurred in the southern portions 

of most of the UTRCA urban centres, with the exception of London CMA which 

experienced most of its growth in its northeastern sections.  Growth in percentage terms 

was highest in the smaller centres of St. Marys and Mitchell and smallest in the larger 

regions of London and Woodstock.  This could be a result of baby-boomer retirees 

moving out of larger urban places into smaller communities or larger urban centres 

focusing on denser housing and development compared to smaller urban areas which do 

not have the same service provision problems (i.e. public transit) as a city the size of 

London. 

 

One area where future work could improve upon this analysis is in determining 

what type of development has occurred in different regions.  This research has only 

focused on ‘development’, determined through change in brightness values in satellite 

imagery, and has made no attempt at highlighting different types of urban growth.   
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If the UTRCA wishes to use this type of analysis to its fullest capabilities it will 

require that regular development detection study be performed, which should one day 

include development type analysis when the techniques have been made available.  

Benefits of this type of research to OCA might occur in many areas including monitoring 

development in and around floodplains and water quality hazard analysis.  While 

Conservation Authorities such as the UTRCA have a voice in determining where 

development should occur based on flood risk, their recommendations are not always 

considered by developers and city planners.  Conservation Authorities can use urban 

development detection analysis to establish whether development is occurring in regions 

that might be prone to flooding during high rainfall events.  If development detection 

research is conducted on a regular basis it will be possible to monitor development trends 

and perhaps use this information to divert urban growth from possible areas of flooding. 

 

The UTRCA and other conservation authorities in Ontario can benefit from RS in 

many ways, such as land use mapping, vegetation analysis, and change detection studies.  

Limitations of RS studies using optical data revolve around spatial resolution and clear-

sky image acquisition issues.  Currently it is possible to acquire certain Landsat ETM+ 

30m datasets free of charge, which can be further ‘Pansharpened’ to 15m resolution.  

These resolutions allow for examination of large areas, but are not suitable for precise 

smaller study area analysis due to lack of sufficient detail to isolate individual features 

such as trees or automobiles. This study was confined to using free images available via 

the World Wide Web, and therefore the study period was determined by the availability 
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of no-cost cloud free images.  However, archived Landsat images are available at a cost 

of $600(US) per image if specific date analysis is required.  Finer resolution images, such 

as IKONOS (1m) and SPOT (2.5m) can be acquired for analysis, but at a higher cost. 
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