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Abstract  

Urban greenspace is important for the health of cities. Up-to-date databases and 

information are vital to maintain and record growth in cities.  Despite detailed mapping of 

urban land cover through high resolution imagery, medium resolution data should not be 

ignored. During the last decade, advances in spaceborne hyperspectral sensors have 

proven to be beneficial over multispectral sensors for land cover monitoring due to their 

increased spectral resolution. The objective of this research was to compare Earth 

Observing-1 (EO-1) Hyperion hyperspectral data to Landsat 5 Thematic Mapper (TM) 

and Satellite Probatoire d’Observation de la Terre (SPOT) 5 multispectral data for land 

cover classification in a dense urban landscape. For comparative analysis, aerial 

orthorectified imagery provided by the Toronto and Region Conservation Authority 

(TRCA) was used as a ground truth method for accuracy assessment. This study utilized 

conventional and segmented principal components (CPCA and SPCA) for data 

compression on the Hyperion imagery, and used principal components analysis (PCA) as 

a visual enhancement technique for multispectral imagery. Image processing including 

the generation of the normalized difference vegetation index (NDVI), and mean texture 

was also performed for both Landsat and SPOT sensors. An unsupervised ISODATA 

classification was generated on all images to produce a land cover classification map for 

a portion of the Lower Don River in Toronto, Ontario, Canada. Experiments conducted in 

this research demonstrated that hyperspectral imagery produced a higher overall accuracy 

(5-6% better) than multispectral data with the same resolution for defining vegetation 

cover. However, SPOT generated greater accuracy results than Landsat and Hyperion for 

vegetation classes. 
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CHAPTER 1: Introduction 
 

Urban greenspace has been most valued for its positive effect on air and water 

quality, the urban heat island effect and ecosystem health. It also allows for rainfall to 

soak into the ground leading to a decrease in flood events (Arnold and Gibbons, 1996; 

Banzhaf and Hofer, 2008; Heiden et al., 2012). The spatial distribution of greenspace 

within dense cities is important for urban planning, sustainable development, as well as 

an increase in the quality of urban life for surrounding residents. This is important 

because urban greenspace including individual street trees, public parks, edges of roads, 

public or private gardens and green infrastructure helps to sustain the quality of urban life 

and reduces street noise (Ahem, 2007; Davies et al., 2008; Zhou and Rana, 2012). 

Therefore, the value of greenspace is not necessarily expressed in a monetary term, but a 

concern for establishing urban social-environmental worth (Cairns, 2006; Paquot, 2005; 

Zhou and Rana, 2012). Therefore, working towards conservation within densely 

populated areas is essential. Identifying where these areas are located is important, prior 

to any efforts being made to protect them.  

Since urban green is significant to the health of cities, databases and information 

are used to keep and record land cover and land use in cities. The Toronto and Region 

Conservation Authority (TRCA) is a large organization that supports sustainable 

development in the city. The TRCA manages all nine watersheds and various 

conservation areas in the Greater Toronto Area (GTA). An important component of their 

contribution includes land use classification. The TRCA’s involvement in conservation is 

important because the use of satellite imagery allows for the update and storage of 

historical information on land types. Therefore, prior to analysing patterns and trends 
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such as vegetation change and urban development, it is important to first identify earth 

surface features from land classification analyses. In this study, by examining land 

classification accuracies of hyperspectral and multispectral imagery, organizations such 

as the TRCA can benefit from using new sensor technology for preparation of thematic 

maps.  In summary, spaceborne sensors with high spectral resolutions are ideal for land 

cover extraction in dense urban areas (Heidens et al., 2012; Jung et al., 2005). This study 

specifically, is important because it tests multispectral and hyperspectral sensors for 

classifying land cover. 

1.1 Image resolution  
  

There are four types of resolutions in remote sensing including radiometric, 

temporal, spatial and spectral. Radiometric resolution is the sensors ability to distinguish 

the differences of intensity in an image, while temporal resolution is the repeat time for a 

sensor to pass over a geographic region. The most significant components of remotely 

sensed images are the spectral and spatial resolutions. These resolutions represent the 

geometric makeup of each pixel and relationship to surrounding neighbourhood pixels in 

a scene or image. Ultimately, the spatial and spectral resolutions are what set 

hyperspectral and multispectral imagery apart. Spatial resolution refers to the sharpness 

level of spatial detail shown in an image (Jensen, 2007; Purkis and Klemas, 2011). It is 

the measure of the smallest object on the ground set by the sensor representing a single 

picture element (pixel) in the image. As a result, distance is associated with pixel size 

describing the side length of a pixel. Thus, the finer spatial resolution is associated with a 

smaller distance (i.e. 30m by 30m) making it easier for one to define features in a scene.  
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Spectral resolution represents a particular range in wavelength of the 

electromagnetic spectrum (EMS) including the number and width of spectral bands 

measured by the sensor (Purkis and Klemas, 2011). If the sensor captures a small number 

of wide bands, it has a low spectral resolution. In contrast, if the sensor captures a large 

amount of narrow bands, the greater the spectral resolution. The advantage of a higher 

spectral resolution is for interpreters to distinguish between features in an image. The 

greater/finer detail in a scene, the more likely unique characteristics are to be defined 

(Jensen, 2007). Based on spectral responses, hyperspectral imagery captures more narrow 

bands than multispectral in the same portion of the EMS.  

1.2 Spectral reflectance of land features 
 

Energy from the sun that reaches the earth’s atmosphere and surface is reflected, 

transmitted or absorbed. The suns position in the sky, time of year, and the terrain on the 

ground are equally important to the characteristics of features and interaction between 

these phenomena. Earth surface materials have unique interactions with the atmosphere; 

hence, the spectral reflectance curve of each feature is affected differently (Jensen, 2007). 

For example, the spectral reflectance of vegetation varies over different portions of the 

EMS (Purkis and Klemas, 2011). First, in the visible spectrum, vegetation reflectance and 

transmittance are small due to a plants ability to greatly absorb chlorophyll (Jensen, 

2007). Second, vegetation in the high near infrared (NIR) portion is a strong reflectance 

that enables great detection of healthy foliage. Third, in the short wave region, moisture 

in vegetation can be detected because the absorption is strong for water.  
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1.3 Land cover and land use classification 
 

Land classification is important because it aims to identify and label each pixel in 

an image to define land cover types. This is followed by pixels being accurately 

classified, inaccurately classified or unclassified (Purkis and Klemas, 2011). There are 

two main classification types: supervised and unsupervised. Supervised classification 

excerpts quantitative information of known training sites by the user in an image while 

unsupervised classification does not require known areas in an image (Jensen, 2007). 

Each method results in determining the number and spatial distribution of spectral classes 

through cluster analysis.  

Accurate land cover classification and mapping is important for planning, 

influencing management and decision making for policy. The ability of satellite imagery 

is significant for the identification of urban forest and health of vegetation at large scales. 

Ultimately, to predict the global environment using increased spectral resolution and 

environmental conditions detected from sensor technology, land cover detection can be 

analyzed and associated with the parameters of human impacts on Earth (Arnold and 

Gibbons, 1996; Banzhaf and Hofer, 2008). For data integration and analysis, modelling 

and map production, spaceborne technology enhances the ability to find ideal solutions to 

environmental problems. Flood events in a city are an example of an environmental 

problem; a realistic solution is to plant trees that will reduce the impact of excessive 

rainfall. Urban landscapes are composed of various materials which make them spectrally 

complex in satellite imagery. A variety of ground features close together make land 

identification challenging, and therefore new sensor technology with a higher number of 

spectral bands such as hyperspectral satellites is crucial for greater analyses.  
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1.4 Multispectral vs. hyperspectral  
 

Monitoring land cover using satellite sensors such as Landsat and SPOT has been 

predominant in ecological applications since the 1970s (Pignatti et al., 2009). 

Considerable advances in remote sensing technology are driven by environmental issues 

rapidly arising at regional scales.  There is lack of literature on the subject of spaceborne 

hyperspectral imagery comparison and the assessment of land cover information, 

specifically in urban areas. By comparing hyperspectral and multispectral imagery, 

accurate vegetation mapping is possible, especially at dense urban scales (Liew et al., 

2002). The spectral resolution is the main factor that distinguishes hyperspectral imagery 

from multispectral imagery (Barry et al., 2001). Hyperspectral sensors contain bands with 

narrow wavelengths while multispectral sensors contain bands with broad wavelengths. 

The advantage of using hyperspectral data over multispectral data is the ability to define 

surface features with a higher spectral resolution. A complete list of spaceborne 

hyperspectral satellites currently in orbit and set to launch is found in Buckingham and 

Staenz (2008).  

1.5 Research objectives 
 

The objective of this research is to compare hyperspectral imagery to 

multispectral imagery for classifying urban greenspace surrounding Toronto’s Lower 

Don River. The goal of this study is to make use of Earth Observing-1 (EO-1) Hyperion, 

Landsat 5 Thematic Mapper (TM), and Satellite Probatoire d’Observation de la Terre 

(SPOT) 5 for comparing land cover and land use information as well as to examine which 

sensor is best for defining vegetation. To achieve these objectives, data analyses will be 

performed by: 
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• deriving the normalized difference vegetation index (NDVI) and mean texture 

from original sensor bands for image classification. NDVI and mean texture as 

well as principal component analysis (PCA) will also be used for visual 

interpretation;  

• producing a conventional and segmented principal component analysis (CPCA 

and SPCA) on the hyperspectral image as a data compression method; and  

• utilizing aerial orthorectified imagery as a ground reference method for accuracy 

assessment while comparing all three sensors. 

1.6 Study area 

 
The study area is the Lower Don River and Toronto’s waterfront (Figure 1-1). 

The Don River is the most urbanized watershed in Canada (TRCA, 2012). Loss of natural 

areas threatens the Don’s watershed health. Significant wetlands are disappearing, and 

only 7.2% of forested land remains in the Don River watershed (TRCA, 2012). It is 

affected by its industrial past which makes it a significant area for studying the health of 

vegetation cover. Today, the Don River watershed consists of 360 square kilometres of 

land throughout Toronto. A large portion of this area is urbanized development (with 

over 800,000 residents) which puts stress on the land (TRCA, 2012). The Don River 

watershed has nine sub-basins. This research will contribute significantly to the 

assessment of land cover classification and through its use of hyperspectral imagery. In a 

previous study, Forsythe (2003) used multispectral data fusion techniques to examine 

residential development over time for the City of Toronto. Ultimately, by using imagery 

from SPOT 5, Landsat 5 TM and EO-1 Hyperion, this study addresses the gap in 
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literature by incorporating hyperspectral data for assessing land classification in a dense 

urban watershed.  

 
Figure 3-1: Lower Don River Study Area 
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CHAPTER 2: Literature Review  
 
2.1 Remote sensing and land classification  
 

Remotely sensed data are regularly used for monitoring and assessing land 

features across large spatial scales and replacing traditional data collection methods, 

which involve time and cost-intensive ground surveys (Heiden et al., 2012; Pignatti et al., 

2009). Classification and mapping of land cover is necessary for sustainable management 

in growing urban cities, and land cover information extracted using digital and visual 

image processing is an important approach used to make decisions for such planning 

endeavours. There are two types of sensors used in this study and discussed throughout 

this chapter, including optical-mechanical systems, such as the Landsat 5 TM 

multispectral sensor; and the linear area array system, such as the SPOT 5 multispectral 

sensor; and the EO-1 Hyperion hyperspectral sensor, also referred to as an imaging 

spectrometer (Jensen, 2007). 

2.2 Differences between hyperspectral and multispectral data 
 

Multispectral satellite remote sensing technologies have been commonly used for 

remotely sensed classification of vegetation since the early 1960s (Govender et al., 2008; 

Jensen, 2007). In a single observation, multispectral sensors generate three to six spectral 

bands of data that range from the visible to NIR of the EMS (Jensen, 2007). This small 

window of spectral bands is a primary disadvantage to multispectral sensors. During the 

last decade, advances in imaging spectrometers have begun to fill the gap in multispectral 

sensor limitations providing better performance in object detection, classification, and 

identification of earth features (Heiden et al., 2012; Pignatti et al., 2009; Purkis and 

Kemis, 2011). Hyperspectral sensors commonly collect more than 200 spectral bands that 

range from the visible to short wave infrared (SWIR) section of the EMS; they provide 
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extensive analyses of earth surface features that would be limited with coarser 

bandwidths collected by multispectral data.  Hyperspectral sensors not only produce 

detailed spectral data consisting of hundreds of bands in a single collection, linear area 

arrays are also used, which improves image geometry and radiometry allowing longer 

instaneous field of view (IFOV) detection and resulting in a more precise reading of an 

objects radiant flux as it passes over a given landscape (Jensen, 2007). Thus, these 

advantages have led to recent scholarly and governmental explorations of classification 

and mapping for land cover and vegetation with the application of hyperspectral imagery 

(HSI) (Heiden et al., 2012; Jung et al., 2005). 

Ultimately, hyperspectral images have advantages over multispectral images. 

Peijun et al. (2010) demonstrated the benefits of EO-1 Hyperion compared to Landsat 

TM imagery, and suggest that image spectrometry is more effective when examining 

urban impervious surfaces. In relation to the advantages of HSI, the unmixing method 

using linear spectral mixture analysis (LSMA) with hard classification (identifying land 

classes as impervious surfaces) methods provides greater accuracy (Peijun et al., 2010). 

When both HSI and multispectral imagery (MSI) are used in classification, such as 

including different data analysis techniques, accuracy assessment is made easier due to 

the integration of a higher number of spectral bands and techniques to define earth 

features. Figure 2-1 shows the differences of multispectral and hyperspectral data in three 

dimensional space. 
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Figure 4-1: 3D data cube 

2.3 Data analysis with multiple sensors 
 

 Data analysis in remote sensing sometimes involves the integration of 

information from two or more sensors in order to examine a common theme. In their 

study, Kruse et al. (2003) compared the performance of the spaceborne Hyperion sensor 

and the airborne visible/infrared imaging spectrometer (AVIRIS) sensor for mineralogy 

mapping. By integrating medium spatial resolution multispectral and hyperspectral data 

with aerial orthorectified imagery, land feature identification is improved due to the 

higher spectral and spatial resolution combined (Kruse et al., 2003; Smith 2003). This 

way, more than six spectral bands are used for better definition of earth surface features.  

According to recent literature, accurate land cover mapping is best when high 

spatial resolution data are used (Petropoulos et al., 2012; Pignatti et al., 2008; Smith, 

2003; Yang et al., 2010). However, there is a gap in literature that compares high spatial 

resolution to high spectral resolution when discriminating land types. Govender et al. 

Hyperion 

SPOT5 
LS5TM 

Images are acquired 
simultaneously in many 
narrow, registered  
spectral bands  
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(2008) used the Hyperion hyperspectral sensor and the multispectral Proba CHRIS 

(Compact High Resolution Imaging Spectrometer) sensor and found an overall accuracy 

of 98%. The authors compared different classification techniques to determine the best 

accuracy results by verifying the spatial distribution of vegetation classification to true 

colour images. Various studies have investigated the ability of integrating Hyperion data 

with other image data (Pu and Gong, 2004; Thenkabaul, 2004; Galvao et al., 2005; 

Giardino et al., 2007). Ultimately, by analyzing different data processing technology, 

information in an image can be extracted more accurately.  

2.4 Applications of multispectral and/or hyperspectral remote sensing in land 
resources 
 

Multispectral satellite sensors have been commercially available since the first 

Landsat satellite was sent into orbit in 1972 (Jensen, 2007). Since the launch of Landsat 

1, several sensors have been sent into space with varying spatial and spectral resolutions 

including the French SPOT 1 satellite that was sent into space in 1986 (European Space 

Agency, 2012). It was not until 1984 that the Landsat 5 sensor was launched, and in 2002 

the SPOT 5 sensor was sent into space (Jensen, 2007). Since the launch of these sensors, 

various applications and analyses of earth have been undertaken.  

 In recent studies, SPOT 5 has proven suitable for crop identification, area 

estimation (Yang et al., 2011) and regional studies of tree canopy-cover patterns (Boggs, 

2010). Yang et al. (2011) evaluated the overall accuracy results (91%) of the SPOT 5 

sensor alone with a maximum likelihood classification technique; however, their study 

does not analyze different sensor data, which may influence accuracy results for 

identifying crop types. In contrast, studies that include image enhancement techniques 

along with other sensors, have proven to be effective (Boggs, 2010; Peijun et al., 2010; 
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Pignatti et al., 2009). Boggs (2010) analyzed the ability of the NDVI technique for 

mapping tree canopy clusters while integrating Quickbird and SPOT 5 imagery and found 

that by combining these two sensors, regional studies of tree canopy patterns increase 

accuracy results by ten per cent (85-95%). The two studies previously mentioned are 

related due to both studies investigating detailed classification of crops and tree canopy 

while using SPOT 5 imagery. 

A major theme in published literature is the use of high spatial resolution data 

used as reference information to test the performance of hyperspectral and multispectral 

medium spatial resolution sensor data for accuracy mapping of various land 

classifications (Peijun et al., 2010; Yang and Everitt, 2010; Winjanarto and Amhar, 

2010). Yang and Everitt (2010) suggest that by combining aerial photography with 

hyperspectral and multispectral data, monitoring and mapping infestations of broom 

snakeweed in the western United States increases overall accuracy results for 

classification maps of 95%. Similarly, Peijun et al. (2010) found that using high 

resolution Quickbird imagery as a ground reference produced an overall accuracy of 

approaching 87% in their study. 

Within the last decade, hyperspectral remote sensing has gained awareness in 

research and analysis. Currently, with spaceborne sensors such as the EO-1 Hyperion, 

hyperspectral data collection is rapidly expanding to applied satellite sensor research 

studies. Applications including water management, agriculture and ecological monitoring 

have advanced with the aid of hyperspectral imagery (Govender et al., 2007; Pignatti et 

al., 2009). The importance of using imaging spectrometry lies in the spectral resolution 

rather than spatial resolution compared to multispectral imagery. 
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Hyperspectral data can be used for analyzing various terrestrial applications. 

Griffin et al. (2005) provide three examples for analyzing EO-1 Hyperion data in 

different applications including cloud-cover analysis, coastal water feature extraction, 

and terrestrial analysis applications. Classification of different terrain types, including 

soil moisture, vegetation chlorophyll, and plant liquid water, was observed to define 

several agricultural fields. Through this research, they suggest that hyperspectral data 

offer value when using selected or full spectral bands (Griffin et al, 2005). Ultimately, 

HSI is versatile when extracting data such as band thresholds, ratios, and differences of 

earth features for object definition. 

Applications in vegetation studies have been conducted by integrating multiple 

sensors. Recent applications for integrating both multispectral and hyperspectral sensor 

types involve vegetation classification at larger scales. Van de Voorde et al. (2008) 

compared the unmixing mapping potential at the pixel level of Hyperion with that of 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and stressed that to classify urban 

vegetation at a spatially detailed level, linear spectral unmixing attains sufficient accuracy 

in Brussels, Belgium. In contrast, Wijanarto and Amhar (2010) used the combination of 

Hyperion and the Moderate Resolution Imaging Spectroradiometer (MODIS) to conduct 

tropical biodiversity mapping in Bogor Botanical Gardens in Indonesia to address the 

need of a tropical spectra library, while at the same time suggesting that band selection is 

most significant for defining features. Souza et al. (2010) conducted a more detailed 

study using 18 narrowband Hyperion data for canopy cover in the Brazilian Savannah. 

The authors found that physical parameters of different vegetation species, including 

grassland and savannah to tall semi-deciduous forest, largely correlated with Hyperion 
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vegetation indices such as the NDVI, therefore comparing Hyperion spectral bands and 

biophysical parameters together. In similar research conducted by Pu et al (2008) in 

California, USA, three different sensors including Hyperion, Advanced Land Imager 

(ALI) and Landsat 7 ETM were used to map forest crown closure and the leaf area index 

(LAI) for comparative analyses. The study found that Hyperion outperforms all sensors 

due to its high spectral resolution.  

An emerging application in urban environmental studies is to compare the ability 

of Hyperion sensor data to other satellite sensors, mainly ones that are multispectral 

including airborne sensors (Goodenough et al., 2003; Walsh et al., 2008). Hyperspectral 

remote sensing has become common in urban environments to monitor the urban 

influence on impervious surfaces (Van der Linden et al., 2009; Weng et al., 2008; Lu and 

Weng, 2006). At a regional level, Peijun et al. (2010) analyzed Hyperion and Landsat 5 

TM data for urban impervious surface extraction and compared it to Quickbird images as 

referencing earth features for assessing the accuracy for each sensor in Xuzhou City, 

China. In their study, Heiden et al. (2011) describe an urban structure type (UST) 

application to assess ecological state in urban planning for Munich, Germany. The 

findings demonstrate the hyperspectral sensors ability to derive urban land cover for 

complex analyses of large dense areas and updating surface material databases for use in 

urban development. Chang et al. (2011) present a challenging analysis where they 

develop techniques to perform an unsupervised linear spectral mixing analysis (ULSMA) 

to determine the number of signatures in an image. This study located spectral signatures 

used to unmix data; this is complex compared to supervised linear spectral mixing 

analysis (SLSMA) because the target signatures are unknown rather than a priori. Jung et 
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al. (2005) examined hyperspectral imagery and its detection of vegetation in an urban 

landscape and found that when discriminating different types of vegetation, the SWIR 

bands are most reliable. They attempted to detect the effect of vegetation on micro-scale 

environmental problems among build-up conditions. 

 Successful applications for defining vegetation at medium spatial resolution by 

incorporating spectral unmixing techniques are seen in various studies (Liew et al., 2002; 

Peijun et al., 2010; Petrou and Foschi, 1999; Pignatti et al., 2009; Ridd, 1995; Settle and 

Drake, 1993; Van de Voorde et al., 2008). These studies have shown that ULSMA is an 

effective way to map land surface and vegetation where it uses fractions of land cover to 

define in each pixel. By characterizing urban environments through LSMA, the 

Vegetation-Impervious-Soil (VIS) model is widely used in urban landscapes (Van de 

Voorde et al., 2008). The VIS model is useful because it represents three physical 

components of urban environment including vegetation, impervious areas and soil (VIS). 

If these three components could be clearly signified as endmembers in space, fractions 

extracted from unmixing a dense area would enable pixels to be placed in the VIS model. 

Van de Voorde et al. (2008) found that unmixing pixels using LSMA provides greater 

accuracy then hard classification methods while using linear modelling portions of 

impervious surfaces for each sensor compared. They suggest that the use of the VIS 

model is important when extracting impervious areas from dense cities. The potential 

analysis of urban form and features on the ground for medium resolution satellite 

imagery can therefore be analyzed with the VIS model.  
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2.5 Data Compression using Principal Components (PC) 
 

Use of hyperspectral imaging (HSI) potentially gives researchers (Datt et al., 

2003; Khurshid et al., 2006; Tsai et al., 2007) the advantage to accomplish complex 

analyses that are often difficult with multispectral imaging. One advantage of HSI is 

maintaining a greater amount of spectral bands to define land cover in dense urban 

regions. Nevertheless, hyperspectral sensors compared to multispectral sensors may 

cause new difficulties in data processing and analysis that could hinder the success of 

certain research endeavours. One of the difficulties of handling hyperspectral datasets is 

the size of data that requires more attention due to its high data dimensionality and 

redundancy (Khurshid et al., 2006; Tsai et al., 2007). These concerns alone may result in 

low accuracies when classifying land features. Ultimately, hyperspectral analysis 

involves crucial attention to data compression. By not compressing hyperspectral data 

and only selecting a few bands for analysis, the continuity of spectral data and the sensors 

full capacity would not be considered.  

Reducing dimensionality in a large dataset while maintaining the data and their 

complexity is the best tactic. An example of a developed algorithm for such data handling 

includes maximum noise fraction (MNF) proposed by Green et al. (1988). Ultimately, 

this data compression approach specifically considers the large amount of data in HSI 

while maintaining useful information to redevelop a dataset with as few bands as possible 

which ideally represent most of the important data and, as a result, reduce dimensionality 

of data (Small, 2001). 

Another approach to reduce data dimensionality for large datasets is PCA. Studies 

often use PCA for visualization interpretation purposes such as feature extraction for 
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reducing data dimensionality and defining classes when performing classification 

(Kaarna et al., 2006; Liew et al., 2002; Myint et al., 2011; Sanchez-Hernandex et al., 

2007). However, greater research and usability of PCA for data compression is not as 

common in literature. Nevertheless, Cheriyadat and Bruce (2003) used airborne 

hyperspectral data and found that data compression is effective, but ineffective for 

supervised classification where areas of known features are defined. They argued that 

PCA does not necessarily retain the important feature characteristics in higher order 

principal components where crucial information may be present in a lower order 

component and can therefore be eliminated for analysis. In this study, each PC was 

closely examined to include the best results for classification. 

For more effective extraction of vegetation over complex study areas, segmented 

principal components analysis (SPCA) has been applied to enhance conventional 

principal components analysis (CPCA) methods (Datt et al., 2003; Kaarna et al., 2006). 

Since vegetation contains diverse structure types, the characteristics, including absorption 

and reflectance across different portions of wavelengths, also differ (Bell and Baranoskie, 

2004). If PCA were to be generated for each range of the spectrum (VNIR, SW1 and 2) 

the significant information is better maintained for each separate portion rather than 

CPCA which is generated across an entire spectrum (Tsai et al., 2007). Ideally, a SPCA 

should produce greater accuracy results for classification purposes. 

In summary, recent research  has shown that greater accuracy results are produced 

when analyzing hyperspectral data in combination with multispectral data for identifying 

various land cover in complex landscapes (Barry et al., 2001; Koch et al., 2005; Liew et 

al., 2002; Peijun et al., 2010; Pignatti et al., 2008; Wijanarto and Amhar, 2010). This 
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research will compare the three sensors for mapping and classification of vegetation 

health in urban areas using hyperspectral and multispectral data. 
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CHAPTER 3: Data and Methodology 
 
3.1 Data collection  
 

Hyperion is a hyperspectral satellite aboard the EO-1 spaceborne platform 

covering the spectral range of 450-2600 nanometres (nm) consisting of 220 bands at a 

spatial resolution of 30 metres (Jarecke and Yokoyama, 2000; USGS, 2011). This push-

broom imaging spectrometer satellite was launched in November, 2000 by NASA for the 

purpose of studying terrestrial vegetation (Griffin et al., 2005) and to establish the 

viability and performance of advanced sensors for the Landsat series (USGS, 2011). In 

contrast, multispectral sensors contain broad spectral bands ranging from the blue, green, 

red, NIR, mid-infrared (MIR) and far-infrared (FIR) of the EMS for Landsat 5 TM and 

green to the MIR and the SWIR for SPOT 5. The imagery used for this study were 

obtained from the US Geological Survey’s Earth Explorer (http://earthexplorer.usgs.gov/) 

server and the GeoBase Canada (http://www.geobase.ca/) server, which were 

preprocessed at level one radiance, systematic and terrain corrected (See Table 3-1). All 

three images were subset to conform to the Hyperion dataset and within the boundaries of 

the Lower Don River watershed as well as the Toronto waterfront. 

Ultimately, this study utilizes three different satellite images including Landsat 5 

TM, EO-1 Hyperion and SPOT 5 from July 17th in 2008, August 1st, August 11th in 2007 

respectively. Table 3-2 shows a complete list of the data and will be further explained. 

The multispectral data from both sensors were subset based on data available from 

Hyperion. Aerial orthorectified imagery provided by the TRCA was used as a ground 

reference for accuracy assessment of the study area. This research attempts to perform a 

http://earthexplorer.usgs.gov/�
http://www.geobase.ca/�
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land cover classification using hyperspectral and multispectral data over the Lower Don 

River at Toronto’s harbour front.  

Table 3-1: Hyperspectral and multispectral data characteristics 

 
Parameters Multispectral  Multispectral Hyperspectral 
WRS - 2 Projection SPOT 4 LS5TM EO-1 Hyperion 

Spectral Range 500-1750 nm 400-2400 nm 
400-2600 nm  
(10 nm ea.) 

Spatial Resolution  20 nm 30 m 30 m 
Swath Width 60 km 185 km 7.5 km 
Acquisition Date August 1st, 2007 July 17th, 2008 August 11th, 2007 
Number of Bands 4 6 & Thermal 220 
Bands used 1-4 1-5, 7 14-55, 135-163, & 191-212 

 
The NDVI, PCA and mean texture image processing techniques were performed 

on each image scene to evaluate certain spectral characteristics for vegetation health in a 

complex urban landscape as well as to achieve dimensionality reduction. An 

unsupervised classification and iterative self-organizing data analysis (ISODATA) 

classification were performed to examine the difference in spectral classes for land cover. 

Classification was only performed on those bands in common with Landsat and SPOT; 

the effect of the SWIR band on classification results was examined. The data collected 

for this study included the three sensors that were based on their medium resolution and 

no cost availability. 

3.2 Image acquisition  
 
 The image time of acquisition presented in Table 3-1 shows different dates for 

each sensor. It is inevitable that freely available data from three separate sensors are 

acquired at a different date and time, and with minimal cloud coverage. The EO-1 

Hyperion image acquired on August 11th, 2007 is the only image available for this sensor, 

thus, the Landsat 5 TM and SPOT 5 images had to be as closely matched as possible in 



21 
 

acquisition dates. Various multispectral images were examined, and the two considered 

in this study have the less than 10% cloud coverage. Although the SPOT sensor is within 

days (August 1st, 2007) of the Hyperion sensor, the closest available data for Landsat 5 

TM is unfortunately acquired almost an entire year after (July 17th, 2008). Although not 

much change can occur in a large city within a span of a year, this time difference may 

affect results of this particular study. For example, underdeveloped land for commercial 

purposes may be developed within a year.  

3.3 Hyperion data pre-processing 

 Data preparation for hyperspectral imagery was necessary. Image rectification, 

also known as geometric correction was conducted on Hyperion by using PCI Geomatica 

OrthoEngine’s generic satellite model by collecting eighteen ground control points 

(GCPs) in reference to the Landsat 5 TM imagery. An overall root mean square (RMS) 

error of 0.59 was achieved as less than one is a necessity. Prior to analysis, all three 

images were projected to the North American Datum 1983 universal transverse Mercator 

(UTM) Zone 17 North projection and visually inspected for alignment. For the reason 

that multispectral sensors have few and wide band widths, the Hyperion band selection 

involved carefully choosing spectral responses that resemble those of Landsat and SPOT 

in the VNIR and SWIR regions.  

3.4 Good Band Selection for the EO-1 Hyperion Dataset 

This section briefly describes the pre-processing methods applied for good band 

selection of Hyperion imagery. Level one terrain corrected data was converted into PCI 

Geomatica format files (.pix). ‘Bad’ band selection was performed first, non-calibrated 

bands according to Petropulos et al. (2012), Pu et al. (2008), Wijanarto and Amhar 
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(2010), Carter et al. (2009) and Jarecke et al. (2001) were removed including bands 1-7, 

58-78, 225-242; these bands were also visually reviewed. According to the USGS (2011) 

198 calibrated bands cover 426 to 2395 nm of the EMS. Second, water absorption bands 

including 120-132, 165-182, 185-187, 221-224 were eliminated to reduce the influence of 

atmospheric scatter, and water vapour absorption that are caused by mixed gasses 

(Petropoulos et al., 2012).  Third, bands visually identified as vertical stripes were 

eliminated including 8-13, 56-57, 79-83, 97-102, 119, 133-134, 152-153, 164, 183-184, 

188-190, 213-220. Images containing vertical stripes are a result of faults with push-

broom based sensors and usually removed after visual inspection (Petropoulos et al., 

2012; Pu et al., 2008; Wijanarto and Amhar, 2010). Atmospheric correction was not 

conducted because the images are already terrain corrected and according to Petropoulos 

et al. (2012) it is not necessary in a single observation. The Hyperion wavelength (nm) 

ranges were then compared to Landsat 5 TM and SPOT 5 and reduced from 122 to 93 

Hyperion bands (correlated between each of the sensors wavelength portions) and used 

for analysis. The Hyperion bands selected to correlate with the two multispectral sensors 

were chosen based on Carter’s et al. (2009) study and are shown in Table 3-2.   

Table 3-2: Sensor image data 

 

EMS LS5TM WL(nm) SPOT5 WL (nm) Hyperion WL (nm) Correlated nm) 
Visible 1 450-520    n/a n/a 14 

488-926 

488-520 
Visible 2 520-600 1 500-590 21 520-590 
Visible 3 630-690 2 610-680 31 630-680 
NIR 4 760-900 3 780-890 48 780-890 
SWIR 1 5 1550-1750 4 1580-1750 150 1488-1790 1580-1750 
SWIR 2 7 2080-2350    n/a n/a 206 1972-2365 2080-2350 
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3.5 Methodology 

Principal component analysis, as previously mentioned, is a transformation that 

extracts useful features from the image correction matrix (Sanchez-Hernandex et al., 

2007; Tsai et al., 2007). It can be used in analysis as an additional parameter to classify 

data together with original RGB imagery and also is used as the basis for classification 

methods. In this paper, PCA is used in both ways, to compress Hyperion data, and to use 

in visual interpretation of multispectral data. A complete methodology work flow for this 

paper is shown in Figure 3-1.  

 

By using PCA to compress data, Liew et al (2002) produced a land cover 

classification map using unsupervised ISODATA from a PCA (on dominant components) 

for two tropical regions in Southeast Asia. They compared the results of classification to 

land cover maps during the same time period. The authors state that hyperspectral data 

contains redundant spectral bands and this issue can be removed using PCA (Liew et al., 

2002). This could be the reason why hyperspectral data are unable to classify properly 

due to the coefficient variables for each detailed spectral channel, which is too small to 

produce an error matrix (Kaarna et al., 2006). Therefore, by using PCA, all original 93 

bands (good bands) are able to be processed for analysis. 
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Figure 5-1: Methodology workflow 

Figure 3-2 shows the PCs generated from conventional Hyperion. There are five 

PCs generated because of the large amount of spectral bands to be compressed. 

According to Tsai et al. (2007), even though the first three PCs contain the most 

information with fewer bands, there may be a PC in lower order that contains important 

information when using hyperspectral imagery.  In addition to the CPC data compression 

method, a PCA segmentation was performed which separated the VNIR (PCs 1-3 and 5) 

and SW1 (PCs 1-2) and SW2 (PC 1) for defining land cover from land use (See Figure 3-

3 and Figure 3-4).  Based on the eigenvalues and the PCs that visually looked unaffected 

by stripes, these PCs were combined to generate an additional classification for Hyperion. 

In contrast, the PCA 2 was chosen by visual inspection of the images that contained the 

least image distortion for the multispectral images. 
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Figure 3-2: PCs 1-5 (a–e) for conventional Hyperion.  
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Figure 3-3: Principal components for segmented Hyperion, VNIR (a–d). 
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Figure 3-4: Principal components for segmented Hyperion, SW1 (PCs a-b), SW2 (PC c)  

 

The aim of this analysis was to distinguish vegetation from non-vegetation in 

complex urban environments. To achieve this objective, the algorithm for PCA used as a 

feature extraction and data compression method (in order to compare both multispectral 

and hyperspectral data) must be able to define vegetation characteristics and effective 

variations among trees and open green space for classification.  
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3.6 Image Enhancement Techniques for Analysis 

3.6.1 The Normalized Difference Vegetation Index 

There are various image analysis processes that can be applied to data for greater 

feature analysis and extraction. The NDVI is a widely used image ratio for monitoring 

vegetation conditions that is based upon the fact that healthy plants and biomass that 

absorb visible light and reflect NIR (Jensen, 2007; Purkis and Klemas, 2011). Therefore, 

NDVI measures the amount of biomass in an image and is represented by diverging 

shades of black and white in PCI Geomatica that signify a higher level of vegetation. In 

this study, the NDVI should provide a more accurate definition between vegetation and 

built areas in the Don River Valley (Figure 3-5). Forsythe (2003) distinguished classes by 

incorporating the NDVI analyses for urban change detection. Thus, one method for 

processing data includes integrating NDVI. 

 
3.6.2 Principal Component Analysis 
 

PCA is often used in remote sensing to reduce the dimensionality of spatial 

features in an image. As previously mentioned, there are two valuable reasons why this 

method is used, first, to compress data, and second, to extract features for classification 

(Jensen, 2007). Cheriyadat and Bruce (2003) argue that PCA should not be used for 

supervised classification on hyperspectral data due to poor feature extraction and 

dimensionality reduction. In contrast, Tsai et al. (2006) suggest that spectrally SPCA is 

the best method for defining specific plant species with Hyperion hyperspectral imagery 

centred on spectral appearances of vegetation over different wavelength regions that 

resulted in an overall accuracy of 86% as opposed to CPCA of 66%.  
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Figure 3-5: The normalized difference vegetation index for Hyperion (a) Landsat 5 TM 
(b) and SPOT 5 (c). 
 

 

Liew et al. (2002) performed a land cover classification of tropical region and 

forest cover surrounding urban areas in Singapore using an unsupervised ISODATA 

classification and PCA with VNIR bands. Both Liew et al. (2002) and Wijanarto and 

Amhar (2010) found that the spectra data of VNIR bands far exceeded the performance 

ability of the SWIR for forest cover. However, Jung et al. (2005) suggests that SWIR are 

the most efficient bands to examine the differences in vegetation. Liew et al. (2002) 

suggest that further improvement of classifying data would be to incorporate the SWIR 
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bands instead of just the VNIR bands used in their study. As previously mentioned, PCA 

is used in this study as a data compression method for Hyperion data only, while PCA 2 

is used as a visual interpretive method for defining features in Landsat 5 TM and SPOT 5 

imagery (Figure 3-6).  

 

Figure 3-6: Principal component 2 for Landsat 5 TM (a) and SPOT 5 (b).   

3.6.3 Texture and False Colour Composites 

Texture is a measure of the amount of graininess in an image searching for areas 

that have the same roughness characteristic (Jensen, 2007; Purkis and Klemas, 2011). An 

example for using texture includes distinguishing between barren ground and open green 
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areas. Texture is important in defining areas to improve classification accuracy. 

Furthermore, texture is a simple related measure that is extracted from a certain sized 

window set by the user, and then added to the original image dataset prior to 

classification (Jensen, 2007; Forsythe and Waters, 2006; Purkis and Klemas, 2011).  

 

There are different texture measures including homogeneity, contrast, 

dissimilarity and mean texture (Forsythe and Waters, 2006; Purkis and Klemas, 2011).  

Mean image texture is used in this research and is a simple texture description of the grey 

levels in the texture window used for each image pixel (Jensen, 2007). Forsythe and 

Waters (2006) examine different texture measures for the expanding City of Calgary, 

Alberta. They found that by implementing a 3x3 window, it produced greater results than 

a 7x7 window due to the finer detail that was highlighted within densely urban areas. 

Therefore, in this study, mean texture (Figure 3-7) with a 3x3 window size is used. 

  

Another image enhancement technique for determining spectral clusters involved the 

false colour composites. These composites were challenging at first to analyze visually as 

opposed to referring to a true colour composite. As previously mentioned, false colour 

composites are beneficial for understanding vegetated areas of interest in the NIR and red 

regions of the spectrum. (See Figure 3-8). 
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               Figure 3-7: Mean texture measure for conventional Hyperion (a) segmented Hyperion (b) Landsat 5 TM (c) and SPOT 5 (d). 
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Figure 3-8: False colour composites (NIR, Red, Green) for Hyperion (a) segmented 
Hyperion (b) Landsat 5 TM (c) and SPOT 5 (d). 
 
3.7 Classification Mapping: Aggregated Classes 
 

In this research, classification labelling was considered. The classes used are 

derived from the Level I classification system from Anderson et al. (1976). Due to this 

paper’s study area and the spatial resolutions of 20 to 30 metres, five classes were used 

including tree canopy, open green, barren ground, water body, and urban surfaces. Due 

to the objective of this research for examining urban green, the urban surfaces include 

white tops of industrial buildings, parking lots, roads and rows of houses and roof tops of 
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commercial buildings. The open green class includes parks, golf courses, and fields. In 

addition, Peijun et al (2010) used the VIS model proposed by Ridd (1995) where 

vegetation, impervious surfaces and soil are to be examined in areas of increased 

densities. This idea was also considered when creating the classes for this study, 

however, the vegetation class was further divided and a water body class was added due 

to the study area containing large amounts of open spaces, water bodies, and trees along 

the Don River. In addition, there are significant areas of barren ground that needed to be 

classified separately. 

3.8 Unsupervised classification 
 
Many studies have used hyper/multispectral imagery for extracting land cover 

information using an unsupervised classification (Cheng et al., 2011; Liew et al., 2002; 

Yuan and Niu, 2007). An unsupervised classification is used for all images and the 

produced imaging techniques. When using the unsupervised classification approach, the 

entire image is analyzed with unknown training data (Jensen, 2007). Clusters of data can 

then be identified in association to pixel values. The interative self-organizing data 

analysis (ISODATA) algorithm was used to categorize the spectral clusters from the three 

images. This algorithm has been used in vegetation studies for comparing Hyperion 

hyperspectral data to Landsat 7 ETM+ data over Yunnan province in China for land 

classification (Yuan and Niu, 2007). In this study, 100 output spectral clusters (with 20 

iterations) were generated. The algorithm identified between 60 and 64 output clusters. 

The generated clusters were assigned to one of the five land cover classes. 

Thus, the ISODATA method is used consisting of the user specifying the number 

of clusters that may be within the image (Yang, 2007). The computer then assigns 
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coordinates to each cluster within the section and every pixel is allocated to its suitable 

clusters (Rees, 2001). In other words, the ISODATA algorithm group’s pixels with 

similar intensity values within all of the different layers in a classification to ultimately 

match spectral classes with the information classes of interest.  

By using both hyperspectral and multispectral satellite remote sensing data, 

Govender et al. (2008) compared the classification of distinct vegetation classes using 

different classifying techniques. They found that by using a supervised classification 

process, maximum likelihood and Mahalanobis distance provided the best accuracy 

results. The authors found that the classification and mapping of different tree species 

depends on hyperspectral and multispectral to produce different degrees of accuracy and 

are strongly affected by seasonal changes in vegetation from winter to summer. The study 

also found that multispectral images detected genus level classification compared to 

hyperspectral that provided greater detail of genus and species level classification 

therefore suggesting that finer spectral resolution using a unique set of spectral bands can 

substantially improve vegetation classification and hyperspectral data should be used 

together with multispectral data for defining different vegetation classes accurately 

(Govender et al, 2008). Related studies involving forestry and agriculture have 

incorporated supervised classification methods (Pignatti et al., 2009; Wijanarto and 

Amhar, 2010). It is apparent in the previously mentioned literature that the supervised 

method for classifying objects is more suitable for rural studies where landscapes are less 

complex.   
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3.9 Accuracy assessment 
 

Classification accuracy is a necessary component in land cover/use classification 

because it analyzes the difference between the classified data in a study compared to the 

original reference data (Foody, 2002; Jensen, 2007; Thenkabail et al., 2004). It is 

expected to accomplish an accuracy that reflects true land cover. This study assessed the 

accuracy of classification for each of the three images which created an error matrix and 

calculated user’s accuracy (percentage of pixels classified correctly on the ground), and 

producer’s accuracy (percentage of given class that is correctly identified on an image), 

and overall accuracy (Smith et al., 2003; Thenkabail et al., 2004). The kappa coefficient 

of agreement for each classification was generated from the error matrix.  

In this study, the post classification accuracy assessment demonstrates an overall 

percentage of the aggregated classes (tree canopy, open green, barren ground, water 

body, and urban areas) in association to the aerial orthorectified imagery (See Figure 3-

9). First however, in order to proceed with accuracy assessment, Geographic Information 

Systems (GIS) was used to generate three hundred random sample points to be compared 

to across the three classified images and the aerial orthorectified image. The random 

point’s shapefile was generated and the pixels from Hyperion were extracted; the Raster 

to Point tool was used to limit the amount of mixed pixels in the imagery. This procedure 

was done to eliminate the potential of bias results for mixels (mixed pixels). The random 

sample points were created in ArcGIS so that consistency was upheld for comparing the 

three images together and against the aerial orthorectified image. Therefore, the accuracy 

points will fall within the centroid of the pixel, rather than a stratified point potentially 

skewing the aggregation by falling on the edge of a pixel with, for example, 10% water 
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and 90% vegetation.  Although these points may be slightly off-centre with SPOT 5 data 

due to the finer spatial resolution, the accuracy should not alter drastically.  

 

 

Figure 3-9: Aerial orthorectified imagery for ground reference for accuracy measure. 
Source: Orthophoto: Fall 2007, First Base Solutions Inc. provided by the TRCA.  
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CHAPTER 4: Results & Discussion  
 

The overall classification accuracy for the five classes in each image ranged from 

64% to 69%. The Hyperion unsupervised classification with CPCA had an overall 

accuracy of 65.33% and a Kappa value of 0.48, which indicated that agreement in the 

error matrix was largely greater than chance. Hyperion’s SPCA resulted in a 64.00% 

overall accuracy. The Landsat 5 TM and the SPOT 5 unsupervised classification had an 

overall accuracy of 65.00% and 68.67% respectively. By comparing the three 

classification accuracies, the hyperspectral classification with CPCA slightly 

outperformed the SPCA and Landsat 5 TM multispectral classification, however, SPOT 5 

produced the best classification for this study. A complete table of accuracy statistics is 

presented in Table 4-1. 

The overall accuracy suggested by Foody and Mathur (2006) is greater than 80% 

as a threshold to superior classification. However, an overall accuracy threshold was not 

the significance of this research for comparative analysis between each sensor for 

indicating vegetation. Tsai et al. (2007) found in their study that CPCA produced an 

overall accuracy of 66%. Accuracy assessments were used to determine which sensor 

generated the best classification results by incorporating the same random sample points 

across the images in comparison with the aerial orthorectified image as a ground 

reference, and included the NDVI and mean texture.  In other words, the classification of 

the land cover and land use classes with the same coordinates of accuracy were verified 

by visually interpreting the land cover and land use in the aerial orthorectified image. The 

different dates of the satellite imagery and the aerial orthorectified image were taken into 

consideration. 
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Table 4-1: Confusion matrices of classification results from each sensor 
                 Reference Data     

Conventional 
Hyperion   

Tree 
Canopy 

Open 
Green 

Water 
Body  

B. 
Ground 

Urban 
Areas 

  
Totals UA 

 
Tree Canopy 46 15 0 1 19 81 0.57 

 
Open Green   15 24 0 0 16 55 0.44 

Classification Water Body   1 1 18 0 0 20 0.9 
data B. Ground   0 0 0 2 3 5 0.4 

 
Urban Areas 16 13 0 4 106 139 0.76 

 
Totals 78 53 18 7 144 300   

  PA 0.59 0.45 1 0.29 0.74   
 Overall accuracy = 0.65       Kappa = 0.48     

                 Reference Data     

Segmented 
Hyperion   

Tree 
Canopy 

Open 
Green 

Water 
Body  

B. 
Ground  

Urban 
Areas 

  
Totals UA 

 
Tree Canopy 48 16 0 0 16 80 0.6 

 
Open Green   12 24 0 1 19 56 0.43 

Classification Water Body   1 1 18 0 0 20 0.9 
data B. Ground   4 3 0 2 9 18 0.11 

 
Urban Areas 13 9 0 4 100 126 0.79 

 
Totals     78 53 18 7 144 300 

   PA 0.62 0.45 1 0.29 0.69   
 Overall accuracy = 0.64       Kappa = 0.48     

        
  

        Reference Data     

Landsat 5 
TM   

Tree 
Canopy 

Open 
Green 

Water 
Body  

B. 
Ground  

Urban 
Areas 

  
Totals UA 

 
Tree Canopy 44 13 0 0 16 73 0.6 

 
Open Green   13 20 0 0 6 39 0.51 

Classification Water Body   0 0 18 0 0 18 1 
data B.Ground 0 2 0 2 11 15 0.13 

 
Urban Areas 21 18 0 5 111 155 0.72 

 
Totals     78 53 18 7 144 300 

   PA 0.56 0.38 1 0.29 0.77   
 Overall accuracy = 0.65       Kappa = 0.48     

  
       

  

 
      Reference Data     

SPOT 5   
Tree 
Canopy 

Open 
Green 

Water 
Body  

B. 
Ground 

Urban 
Areas 

  
Totals UA 

 
Tree Canopy 58 15 0 0 25 98 0.59 

 
Open Green   8 26 0 0 12 46 0.57 

Classification Water Body   1 0 18 0 0 19 0.95 
data B.Ground 0 4 0 2 5 11 0.18 

 
Urban Areas   11 8 0 5 102 126 0.81 

 
Totals     78 53 18 7 144 300 

   PA 0.74 0.49 1 0.29 0.71   
 Overall accuracy = 0.68       Kappa = 0.54     
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Results show that among the three sensors, tree canopy was highly misclassified 

as urban areas. The segmented Hyperion additionally misclassified tree canopy for open 

green. These results may be produced from neighbourhoods that are mostly made up of 

urban surfaces and contain tree cover, the spectral reflectance’s may be mixed when 

wavelengths penetrate through the tree crown and hit the surface of a road or house that 

reflects back for that particular area. This can also be explained for the classification of 

open green which was mixed with urban areas and mostly tree canopy. In addition, 

urban areas were predominantly mixed with tree canopy and with segmented Hyperion; 

urban areas were mixed with open green areas. Barren ground is mostly misclassified as 

urban areas; this could be from buildings containing white roof tops which have similar 

reflectance to bare soils. Water bodies were correctly classified, with one or two mixed 

pixels for tree canopy and open areas possibly due to high moisture content in the peak 

summer months for Hyperion. 

The SPCA (four PCs in the VNIR, two in the SW1, and one in the SW2) 

maintained the best results compared to CPCA. Figure 4-1 displays the two classified 

images for SPCA and CPCA as well as the multispectral sensors. Moreover, there were 

more pixels classified as urban areas instead of water bodies and a greater number of 

tree canopy pixels classified as urban areas with the SPCA methodology. This could be 

explained by the shadows having similar reflectance characteristics as water in the 

downtown. By examining CPCA, the highest amount of pixels misclassified were urban 

areas mixed with tree canopy. Older residential areas (urban areas), as previously 

mentioned, being misinterpreted as residential tree cover may cause these two classes to 

be mixed.  
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  Figure 4-1: Aggregated results for conventional Hyperion (a) segmented Hyperion (b) Landsat 5 TM (c) and SPOT 5 (d).
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4.1.1 Aggregated Results and Discussion 

Further experiments should be conducted to assess the accuracy with greater PCA 

segments for each range of the EMS. Tsai et al. (2007) suggest that the greater number of 

SPCAs does not increase accuracy, instead, greater segments in each portion of the 

spectrum increase accuracy. In this study, the reason for low accuracy may be caused by 

the atmospheric affects not being properly corrected. As shown in Figure 3-2 (e), the fifth 

PC is a result of conventional Hyperion’s data spectral ‘smile’ effect which does not 

represent reflectance anomalies of features (Datt et al., 2003). Tsai et al. (2007) argue that 

data in the short wave range with longer wavelengths may be noisy and cause poor data 

results. Taking this into account, the noisy PC bands were eliminated for classification 

when performing the spectrally SPCA to generate higher overall accuracy; however, in 

this study, this method resulted in a moderate overall accuracy amongst the three 

satellites. A table of accuracy results organized by classes for each sensor is shown in 

Table 4-2. 

Although literature suggests that SPCA should produce greater accuracy results 

over CPCA (Bell and Baranoskie, 2004; Tsai et al., 2007), this study found the opposite. 

It was found that SPCA did not have the expected results for classification as a whole, 

however, it is essential to note that conventional Hyperion and segmented Hyperion 

methods did outperform the Landsat 5 TM sensor for vegetation differences (for tree 

canopy and open green spaces). The resulting higher accuracy obtained using Hyperion 

data proves that spectral analysis is a significant component for applying classification to 

an urban setting (between 5-6% better). Although SPOT 5 mostly outperformed the other 

two sensors, this can be explained by the difference in spatial resolution, as SPOT 5 
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image pixels have higher spatial resolution. By examining urban areas, Hyperion did 

outperform SPOT 5 for barren ground with a user’s accuracy of 40% and a Kappa of 

0.39 and also produced a greater Kappa of 0.46 for tree canopy. 

Table 4-2: Accuracy results for comparison organized by classes and the highest values 
(highlighted boxes indicate the highest values). 

 

 

 

 

 

 

 

 

 

 

 

 

Image classification is a successful method used to define land cover in complex 

landscapes (Govender et al., 2008; Peijun et al., 2010; Yang and Everitt, 2010). The 

aggregated classification results for Landsat and SPOT were derived using NDVI, PCA 

2, and mean texture (See Figures 3-5, 3-6, and 3-7). Hyperion aggregated classes were 

also derived from these parameters with exception that the original five principal 

components were used to perform classification as a form of data compression for 

assessing CPCA and selected principal components for SPCA.    

 
    Class     Producer's User's Kappa 

Sensor  Accuracy  Accuracy         Statistic 
Tree Canopy        
Hyperion 58.97% 56.79% 0.42 
Segmented 61.54% 60.00% 0.46 
LS5TM 56.41% 60.27% 0.46 
SPOT5 74.36% 59.18% 0.45 
Open Green 

   Hyperion 45.28% 43.64% 0.32 
Segmented 45.28% 42.86% 0.31 
LS5TM 37.74% 51.28% 0.41 
SPOT5 49.06% 56.52% 0.47 
Water Body  

   Hyperion 100.00% 90.00% 0.89 
Segmented 100.00% 90.00% 0.89 
LS5TM 100.00% 100.00% 1.00 
SPOT5 100.00% 94.74% 0.94 
B.Ground 

   Hyperion 28.57% 40.00% 0.39 
Segmented 28.57% 11.11% 0.09 
LS5TM 28.57% 13.33% 0.11 
SPOT5 28.57% 18.18% 0.16 
Urban Areas 

  
  

Hyperion 73.61% 76.26% 0.54 
Segmented 69.44% 79.37% 0.60 
LS5TM 77.08% 71.61% 0.45 
SPOT5 70.83% 80.95% 0.63 
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By applying image enhancement techniques such as the NDVI, principal 

components and texture, there is a greater possibility for class separability. Amongst the 

three sensors, mean texture clearly defined urban areas along the Harbourfront from 

barren groundsurfaces that may have similar spectral reflectance. Although texture did 

not effectively differentiate between urban areas and open green, mean texture was 

useful for defining tree canopy from water bodies, for example in the Don River Valley. 

PCA 2 became useful for effectively outlining open green spaces including fields, parks 

and golf courses. The NDVI effectively defined open green spaces from urban areas and 

vegetation from water bodies. This enhancement was also useful for greater separability 

between vegetation and roads around the Don Valley Parkway. Vegetation is in a lighter 

and brighter tone therefore, it has the ability to distinguish between urban surfaces with 

higher reflectance from white roofs (which are displayed dark). Full accuracy statistics 

are presented in Table 4-1. 

In the aggregated images (Figure 4-1), it is visually apparent that some of the land 

classes are misclassified in Downtown Toronto (southwest corner of image). Since there 

is low reflectance of light caused by building shadow, these pixels are severely mixed 

with the water body class (most evidently with the Spot and Hyperion sensors). In the 

conventional and segmented Hyperion tree canopy and open green are misrepresented by 

water bodies, however, the accuracy results may not include the mixed pixels in the 

downtown area possibly because an accuracy point does not fall on these pixels. 

Furthermore, on the Don Valley Parkway towards highway 404, urban areas are mixed 

with water bodies. Landsat imagery was able to outline the spectral reflectance in the 

downtown as urban areas better than the other sensors. Ultimately, the results of the



45 
 

aggregated classes of the Hyperion and Spot sensors embody clear definition of 

vegetation/urban green space compared to the Landsat sensor of approximately 6-14 % 

greater foliage. 

The aerial orthorectified imagery was used to assess how well the classification 

system worked for hyperspectral and multispectral data. Peijun et al. (2010) used 

Quickbird images as a ground reference in Xuzhou City, China and found that the EO-1 

Hyperion hyperspectral image is more efficient than Landsat 5 TM multispectral imagery 

for extracting vegetated areas. Thus, by comparing medium spatial resolution data to 

finer spatial resolution aerial orthorectified imagery provided by the TRCA, land 

classification can be accurately measured (see Figure 3-9 for aerial orthorectified image).  

Figure 4-2 shows the resulting class differences between the four images. It is 

found that both CPCA and SPCA Hyperion outline vegetation, specifically tree canopies, 

greater than Landsat and are almost as detailed as SPOT classification. This is especially 

evident for areas around Sunnybrook Park and surrounding the Withrow Park residential 

area. It is evident that there are areas of mixed pixels with the Landsat and Hyperion 

imagery for the vegetated classes. In addition, in Figure 4-2 a, it is evident that Landsat 

detected barren ground and water bodies greater than the other sensors. However, this 

does not necessarily represent true land cover and could contain mixed pixels. In Figure 

4-2 b, conventional and segmented Hyperion, and SPOT detect water body pixels in the 

Don River, where Landsat is unable to determine this area as having water. Figure 4-3 

shows the differences between conventional PCA and the three remaining images (SPCA, 

Landsat 5 TM, and SPOT 5). These results define the change and no change of all classes 



46 
 

(tree canopy, open green, barren ground, water bodies and urban surfaces) between the 

hyperspectral and multispectral images.  

Further comparative analysis was conducted in ArcGIS by extracting the area of 

classes in each image. It was found that conventional Hyperion contained the largest area 

of tree canopy with approximately 41 square kilometres compared to segmented 

Hyperion (roughly 39 km2), SPOT (roughly 35 km2) and Landsat holding the lowest 

amount of tree canopy coverage at around 25 square kilometres. These area measures are 

similar to open green coverage and can be seen Table 4-3. 

The percentages of each class were calculated in ArcGIS for comparison. It is 

interesting that although segmented Hyperion is known to produce better results than 

conventional Hyperion (Tsai, et al., 2007), the coverage in Table 4-3 does not show this 

for the classes (with exception of barren ground displaying 4% greater coverage). Table 

4-3 also shows that the SPOT sensor identified 30% of the image as tree canopy, 

compared to Landsat with the lowest percentage of tree canopy (22%). Additionally, 

conventional Hyperion (25%) and segmented Hyperion (23%) detected tree canopy cover 

greater than Landsat. For open green spaces, Hyperion and SPOT satellites maintained 

approximately the same amount between 16-17% coverage while Landsat identified only 

11% of open green space. In relation to these figures, Landsat identified 4-12% more 

urban coverage than Hyperion and SPOT satellites. These figures therefore confirm that 

higher spectral and spatial resolution sensors can outperform sensors with less spectral 

resolution and coarser spatial resolution.  
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Table 4-3: Area of aggregated classes  

       
  

Tree 
Canopy 

Open  
Green 

Water  
Body 

B. 
Ground 

Urban 
Areas Total 

C. Hyperion 
      Pixel Count 45821 30989 10915 2020 96266 186011 

Area km2 41.24 27.89 9.82 1.82 86.64 167.41 
Percentage 24.63 16.66 5.87 1.09 51.75 100.00 
S. Hyperion 

     Pixel 
Count 42954 29225 11053 9594 93185 186011 
Area km2 38.66 26.30 9.45 8.63 83.87 167.41 
Percentage 23.09 15.71 5.94 5.16 50.10 100.00 
Landsat 5 

      Pixel 
Count 28500 14577 7688 6388 73776 130929 
Area km2 25.65 13.12 6.92 5.75 66.40 117.84 
Percentage 21.77 11.13 5.87 4.88 56.35 100.00 
SPOT 5 

      Pixel 
Count 87925 49949 18983 7483 130260 294600 
Area km2 35.17 19.98 7.59 2.99 52.10 117.84 
Percentage 29.85 16.95 6.44 2.54 44.22 100.00 
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Figure 4-2: Aggregated results for the Don River and Sunnybrook Park area (a) and Evergreen Brickworks area, Rosedale and 
Withrow Park (b).  
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Figure 4-3: Differences between each sensor from CPCA and all five classes. Results for the Don River and Sunnybrook Park area (a) 
and Evergreen Brickworks area, Rosedale and Withrow Park (b).
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CHAPTER 5: Conclusion 

Hyperspectral remote sensing technology exhibits the capacity for vegetation 

definition. This major research paper presents a comparative analysis between 

hyperspectral and multispectral imagery for mapping land cover in the City of Toronto, 

Ontario, Canada that surrounds the Lower Don River. This study performed spectrally 

SPCA and CPCA on Hyperion imagery in order to compare classification of vegetation 

with Landsat 5 TM and SPOT 5 data. In addition, aerial orthorectified imagery as a 

ground reference was used for accuracy measure. After comparing the results from 

Hyperion, TM and SPOT data, it was found that HSI is slightly more effective than 

multispectral imaging with the same spatial resolution for tree canopy and open green 

space extraction. Nevertheless, SPOT had the highest overall accuracy among all sensors 

in this study. For two of the vegetation classes (tree canopy and open green), it is 

significant to note that Hyperion, both conventional and segmented, outperformed 

Landsat 5 TM by approximately 5-6% overall accuracy. Nevertheless, SPOT generated 

greater accuracy results among Landsat and Hyperion for the vegetated classes. 

Ultimately, unsupervised land cover classification with ISODATA was performed 

using data from three separate sensors. Moreover, band ratios or spectral indices are 

commonly derived from imagery to enhance certain features to differentiate between 

various vegetation types mixed in with other land uses (Govender et al., 2007). Particular 

data enhancement methods include NDVI to define healthy vegetation and PCA to 

determine non vegetated and vegetated areas. These indices and methods are used as a 

separability technique to classify vegetation across large land areas. Image classification 

is a successful method used to define land cover in complex landscapes (Peijun et al., 
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2010). This research found that, data analysis of hyperspectral imagery has the potential 

for improving classification accuracies of land cover and land use over multispectral 

imagery with the same resolution. Classification error occurred mostly in classes such as 

bare earth, water bodies and urban areas, with low separability values.  

5.1 Limitations 

This research was limited by data constraints. Data for the EO-1 Hyperion is 

restricted to one date (August 1st, 2007), and limited to a portion of the Lower Don River. 

Due to this data constraint of one available image and narrow extent, sub-watershed 

change detection could not be analyzed. In addition, because only one Hyperion image 

was available, the Landsat and SPOT imagery had to be matched to the temporal 

resolution of Hyperion. However, imagery was not available for the specific date. The 

closest date to Hyperion and SPOT for Landsat was one year later in 2008. Also, there 

are missing data at the mouth of the Don River where the Keating channel is located in 

the Hyperion imagery. Moreover, SPOT 5 spatial resolution of 20 metres was not 

resampled to match the 30 metre spatial resolution of Hyperion and Landsat which could 

have affected accuracy results. 

Data compression of hyperspectral imagery was a challenge because PCI 

Geomatica and ENVI are unable to process data for classification due to the software’s 

threshold of processing no more than sixteen channels at one time. This affects the data 

because the purpose is to measure accuracy across a large data set with detailed spectral 

bands. Although parameters for output data can be set to 32 bit-real file storage, 

hyperspectral data cannot be processed. This is why the literature (Datt et al., 2003; 

Small, 2001; Tsai et al., 2007) suggests certain data compression algorithms that allow a 
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large dataset to be condensed, thus redirected the scope of the study. Tsai et al. (2007) 

argue that poor results for vegetation classification can be explained by the inconsistency 

among vegetation and non-vegetation pixels if PCA is performed on an entire 

hyperspectral dataset. To avoid this from occurring, the authors suggest that non-

vegetated pixels be masked out from the PCA process. By masking vegetated areas, 

better results could be generated for defining tree species because the PC’s consider the 

variance across entire classes and focus on useful data for separating vegetation. 

Therefore, discrimination among plant species only, will produce better overall accuracy 

instead of comparing what is vegetation and what is not. This is useful for detailed 

studies where targeting different plant species is the purpose (Tsai et al., 2007).  

The predefined features by the user formulated during classification affect the 

user’s ability to identify validation points. This was avoided by using aerial orthorectified 

imagery from the same year to determine the classes for each accuracy point. However, 

depending on the satellite imagery, this could still be affected. The fixed accuracy points 

were used to reduce bias, but there is still bias because each sensor captured the image on 

a different date. In addition, interpretative error at initial classification is possible and 

could be the reason for classification errors once validation points were developed. 

Nevertheless, low accuracy is expected because the three images are compared to an 

aerial orthorectified image, which is higher resolution. The aerial orthorectified image 

acts as ground truth, the only difficulty is that it is on a later date in the fall than the three 

sensors in the summer. If images were acquired the same day and time, then accuracies 

would be even more comparable.  
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Since urban green is significant for the quality of urban life, databases and 

information are even more important to keep and record in cities. Further work is to 

explore other more effective data compression and classification methods to increase 

classification accuracy. Although comparing hyperspectral and multispectral data for land 

cover classification with various data analyses was beneficial for measuring spectral 

separability at medium resolution, further research could be conducted on detailed 

analysis of Hyperion spectral bands such as spectral unmixing. By unmixing the pixels in 

an image, a more detailed study for mapping health of tree species along the Don River 

Valley can be examined.  
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