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Abstract 
 

 

The Vancouver Census Metropolitan Area (CMA) has experienced steady growth 

in recent years. These growth patterns, common to many metropolitan areas, are visible 

throughout the region using medium to high-resolution satellite imagery.  Enhanced 

Thematic Mapper Plus (ETM+) data from Landsat 7 were put through the PANSHARP 

image fusion process. An urban change detection analysis for the Vancouver CMA was 

then performed for a three year period from 1999-2002.  Unsupervised classification 

methods and image differencing techniques allowed for the determination of urban 

development areas. Change parameters revealed that the CMA region has experienced a 

yearly average of 5.87km2 of development, with the majority occurring in areas that 

correspond to the region’s growth strategy. With an overall classification accuracy of 

approximately 90%, pansharpened imagery allowed for the clear distinction of land cover 

classes and proved to be an effective tool for detecting urban development. 
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Chapter 1: Introduction  
 

Change detection can be broadly defined as the process of identifying differences 

in the state of an object or phenomenon by observing it at different times (Singh, 1989). 

Essentially, change detection involves the ability to quantify temporal effects using multi-

temporal data sets. Because of the advantages of repetitive data acquisition, its synoptic 

view, and digital formats suitable for computer processing, remotely sensed data have 

become the major data source for different change detection applications over the past 

decades (Lu et al., 2003). Traditionally, the majority of change detection applications 

were focused on natural environments, but in recent years advancements in image 

acquisition and quality have allowed urban environments to be studied in more detail. 

While conventional aerial photographs possess the ability to detect change over relatively 

small areas at a reasonable cost, satellite imagery has proven to be a more cost effective 

method for larger region applications (Atkinson and Tate, 2000). Advances in automated 

change detection techniques, coupled with improvements to image fusion/sharpening 

methods, have widened the spectrum for urban change detection analysis. Effective 

image fusion techniques extend the application potential of remotely sensed images as 

they retain both high-spatial and high-spectral resolutions, characteristics that are vital for 

accurate change detection studies of urban environments (Zhang, 2004). 

 

1.1 History of Vancouver, British Columbia 

 

 In 1886, the City of Vancouver was officially incorporated with a population of 

1000 people (Discover Vancouver, 2004). Since that time, the city has experienced 

tremendous growth and the once densely forested area has been transformed into a 

thriving urban core that contains approximately 546,000 people as reported in the 2001 
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Census, serving as the foundation for the Vancouver Census Metropolitan Area (CMA) 

(Statistics Canada, 2001) - (Figure 1.1).  
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Figure 1.1: City of Vancouver Population History: 1891-2001 
 

 

 With the exception of a few brief periods, Vancouver has always experienced 

healthy population growth since its inception. The major factor driving population growth 

in this area has been migration (British Columbia Statistics, 1997). 

Generally speaking, the recession of 1982 resulted in the migration of a large 

share of population away from BC’s smaller resource-based communities in favour of 

regions where employment prospects were more favourable such as the large 

Metropolitan centres of Vancouver and Victoria. This, coupled with the increasing 

importance of the service sector, resulted in declining populations in outlying areas in 

favour of the province's larger metropolitan regions (British Columbia Statistics, 1997). 

As has been the case in the past, the Vancouver region, with a well-diversified economic 

base will likely experience more consistent and higher population growth in the future. 

However, while the population of the Vancouver area is expected to grow larger, it will 

also grow older as the baby boomers set into the retirement years and a natural decrease 

is imminent from the existing population base. 
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1.2 Study Area  
 

The Vancouver Census Metropolitan Area (CMA) - (Figure 1.2), closely 

resembling the Greater Vancouver Regional District (GVRD) - (Figure 1.3) is located in 

the southwest corner of mainland British Columbia. The CMA is comprised of nine 

Consolidated Census Subdivisions (CCS).  

Between 1991 and 1996, Vancouver was the fastest growing metropolitan area in 

Canada, but shifted to fifth place in the second half of the 1990’s. Immigration data 

released by Statistics Canada revealed that 189,660 immigrants to Canada settled in 

Greater Vancouver between 1991 and 1996 (Statistics Canada, 1996). At the same time,  

the region’s total population grew by 229,075 people, from 1,602,590 in 1991 to 

1,831,665 in 1996. This means that international immigration accounted for 82.8% of the 

region’s growth between 1991 and 1996. While the inflow of international migrants into 

the region was down 20,000 from the record highs posted in the previous 1991-1996 

period, regional gains in immigrant residents between 1996 and 2001 were the second 

highest ever recorded over a five year period. The decline in international immigration 

during the latter part of the 1990’s was primarily due to the curtailment of immigration 

flows from Hong Kong (GRVD Policy and Planning, 2003). During the 1991-1996 

census period leading up to Hong Kong’s 1997 repatriation with the People’s Republic of 

China, Greater Vancouver received 44,700 Hong Kong immigrants, but levels fell 

drastically to 15,700 in the five year period following the transfer of sovereignty (GRVD 

Policy and Planning, 2003). 
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Figure 1.2: Location of the Vancouver CMA Study Area. (A) Geographical location of 

the Vancouver CMA in provincial context (Source: Graphic Maps, 2004); (B) Nine CCS 

that comprise the Vancouver CMA (Source: DMTI Spatial, 2004). 
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Figure 1.3: Overview of the Greater Vancouver Regional District (GVRD) – (Source: 

GRVD, 2004). 

 

Overall, between 1996 and 2001, BC’s population grew by 4.9% (183,238 

people), slightly higher than the national rate of 4.0%. Within BC, the focus of growth 

shifted, towards the three CMAs of Vancouver, Victoria, and Abbotsford. While these 

three areas accounted for 95% of the increase in population overall, 85% of this growth 

was in the Vancouver CMA alone. Even with the lower growth rate, the Vancouver CMA 

added over 155,000 people in five years, the equivalent of adding a municipality the size 

of Richmond BC (City of Vancouver, 2001). This population boom led to a significant 

increase in housing growth rates, depicted in Figure 1.4 below. 
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Figure 1.4: Average Annual Housing Growth Rates, 1991-1996 & 1996 – 2001  

Source: City of Vancouver, 2001. 

 

 

1.3 Vancouver’s Liveable Region Strategic Plan (LRSP) 

 

Adopted in 1996, the Liveable Region Strategic Plan (LRSP) is Greater 

Vancouver's regional growth strategy to ensure the region’s future sustainability. The 

primary goal is to help maintain regional liveability and protect the environment in the 

face of anticipated growth in Greater Vancouver (GVRD, 1996). The LRSP calls for 

concentration of a larger share of population, and correspondingly of new housing, in the 

Burrard Peninsula, the North East Sector, North Surrey and North Delta, in order to allow 

more people to live closer to their workplaces. Furthermore, the Plan encourages more 

ground-oriented housing within this area of compact growth. Housing trends confirm the 

region’s increasing appetite for ground-oriented, medium density housing forms, but the 

challenge remains to accommodate more of the total additional housing required 

regionally within the growth concentration area defined by the Plan, delineated by the 

white areas in Figure 1.5 below (GVRD Planning Department, 1998). 
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Figure 1.5: LRSP Concept Map (Source: GVRD, 2004). 
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1.4 Problem Statement  

 

The Vancouver CMA has experienced enormous growth over the past decade. 

Between 1991 and 1996, Vancouver was the fastest growing metropolitan area in 

Canada, but shifted to fifth place in the second half of the 1990’s. Despite the lower 

growth rate, the population of the Vancouver CMA still increased by over 155,000 

people in five years, placing additional pressures on the area’s infrastructure and existing 

housing resources (Northwest Environmental Watch, 2002).  

As urbanization continues to extend from central Vancouver, the consumption of 

land for development is unprecedented. Given the speed of Greater Vancouver’s growth 

and its limited surrounding land, the region does not have the luxury to allow for poorly 

planned growth. If Vancouver is to preserve its precious farmland and improve 

transportation choices for its residents, it has to grow smart, which means concentrating 

population increases in existing neighbourhoods (Northwest Environmental Watch, 

2002). To discern these growth patterns, and ensure that smart growth is prevailing in the 

Vancouver region, satellite imagery has been shown to be an efficient and cost effective 

method for detecting the growth of urban environments.  

The successful launch of Landsat 7 in 1999 has provided the Landsat data user 

community with the opportunity to utilize the data from this satellite in an enhanced 

pansharpened form (Forsythe, 2004). Such enhancements allow for the detection of 

smaller scale changes (e.g. new houses and roads, widened highways, excavated land), 

which were once unobservable, but prove to be of great importance to urban planning and 

monitoring applications.  
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1.5 Purpose of Research  

The purpose of this research is to utilize pansharpened Landsat 7 imagery to 

detect urban change in the Vancouver CMA across a three year period (1999-2002). The 

specific research objectives are: 

 

(1) To detect urban change within the CMA using unsupervised classification 

procedures and image differencing techniques. 

(2) To outline and analyze the change parameters from the quantitative and 

qualitative results generated (i.e. expansion and redevelopment). 

(3) To assess the accuracy of the results and determine the reliability of the findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

Chapter 2: Literature Review 

 

The following chapter is divided into three sub-sections that cover the pertinent 

background information that is relevant to this research topic. Section 2.1 presents an 

overview of the Landsat satellite program with particular emphasis on the Landsat 7 

platform. Section 2.2 provides a synopsis on image fusion/sharpening techniques with 

concentration focussed on the effectiveness of the PANSHARP fusion method. Finally, 

Section 2.3 summarizes past studies that have utilized remotely sensed imagery for 

detecting urban change and also reviews the success of the methods undertaken.  

 

 

2.1  The Landsat Satellite Program Overview (1972-present) 

 

The Landsat Program is the longest running enterprise for acquisition of imagery 

of the earth from space (USGS, 2004). The first Landsat satellite was launched in 1972; 

the most recent, Landsat 7, was launched in April 1999. A total of seven satellites 

compose the Landsat series (Table 2.1) with the major goal being to track land cover 

changes (Masek et al., 2000) or as Lauer et al. (1997) proclaim: “to discriminate, 

identify, categorize, and map the Earth’s features and landscapes based on their spectral 

reflectances and emissions.”  

Table 2.1: Landsat satellite history and status  
Satellite Launch Date Status 

Landsat 1 July 1972 Decommissioned 1978 

Landsat 2 January 1975 Decommissioned 1982 

Landsat 3 March 1978 Decommissioned 1983 

Landsat 4 July 1982 Data transmission problems (Standby mode) 

Landsat 5 March 1984 Still collecting and transmitting data to ground stations 

Landsat 6 October 1993 Failed to achieve orbit 

Landsat 7 April 1999 Still collecting and transmitting data to ground stations, but since 

May 2003, Scan Line Corrector (SLC) problems have adversely 

affected imagery 

Source: After Lauer et al., 1997 
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Throughout the course of the Landsat program, the devices used to capture data 

have varied. Landsats 1-3 contained a Return Beam Vidicon (RBV) “camera” as well as a 

Multispectral Scanner (MSS) instrument. The MSS was onboard Landsats 1-5. With the 

launch of Landsat 4, a new device, the Thematic Mapper (TM) was introduced. The 

launch of Landsat 7 saw the introduction of the Enhanced Thematic Mapper (ETM+) 

(Lauer et al., 1997; Forsythe, 2002). Table 2.2 outlines the various satellites and their 

sensor characteristics. 

 

Table 2.2: Landsat satellites and sensor characteristics  
Satellite Sensor Bandwidths 

(µm) 

Resolution 

(m) 
Satellite Sensor Bandwidths 

(µm) 

Resolution 

(m) 

Landsats 

1&2 

RBV (1) 0.48-0.57 80 Landsats 

4&5 

MSS (4) 0.5-0.6 82 

 (2) 0.58-0.68 80  (5) 0.6-0.7 82 

 (3) 0.70-0.83 80  (6) 0.7-0.8 82 

MSS (4) 0.5-0.6 79  (7) 0.8-1.1  

 (5) 0.6-0.7 79 TM (1) 0.45-0.52 30 

 (6) 0.7-0.8 79  (2) 0.52-0.60 30 

 (7) 0.8-1.1 79  (3) 0.63-0.69 30 

Landsat 3 RBV (1) 0.505-0.75 40  (4) 0.76-0.90 30 

MSS (4) 0.5-0.6 79  (5)1.55-1.75 30 

 (5) 0.6-0.7 79  (6)10.4-12.5 120 

 (6) 0.7-0.8 79  (7)2.08-2.35 30 

 (7) 0.8-0.11 79 Landsat 7 ETM (1) 0.45-0.52 30 

 (8) 10.4-12.6 240  (2) 0.52-0.60 30 

    (3) 0.63-0.69 30 

    (4) 0.76-0.90 30 

    (5)1.55-1.75 30 

    (6)10.4-12.5 150 

    (7)2.08-2.35 30 

    PAN 0.50-0.90 15 

Source: modified after Geoimage, 2004. 

Of particular interest to the context of this paper are the characteristics and properties of 

the Landsat 7 ETM+ satellite (Figure 2.1). The design of the ETM+ stresses the provision 

of data continuity with Landsat 4 and 5. Similar orbits and repeat patterns are used, as is 

the 185km swath width for imaging. 
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Figure 2.1: Diagram of the Landsat 7 satellite  

Source: Geoscience Australia, 2004. 

 

 

As with the ETM originally planned for Landsat 6, the system is designed to 

collect 15m resolution panchromatic data (which actually extend to 0.90µm in the near 

IR, well outside the visible spectral range normally associated with panchromatic 

imagery) and six bands of multispectral data at a resolution of 30m. A seventh, thermal 

band is incorporated with a resolution of 60m (versus 120m for Landsat Thematic 

Mapper data) - (Lillesand et al., 2004).  

While there have been previous satellites such as SPOT, where same-sensor 

image fusion was possible, with Landsat 7 the opportunity exists to enhance data over a 

much wider portion of the electromagnetic spectrum (Forsythe, 2004).  
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2.2 Image Fusion or Sharpening  

  

Image fusion, also called pansharpening, is a technique used to integrate the 

geometric detail of a high resolution panchromatic image and the colour information of a 

low resolution multi-spectral (MS) image to produce a high-resolution MS image (Zhang, 

2004). An effective image fusion technique can extend the application potential of such 

remotely sensed images, as many remote sensing applications require both high-spatial 

and high-spectral resolutions, especially for GIS based applications. 

Beginning in the mid-1980’s, image fusion received considerable attention from 

researchers in remote sensing and image processing, as the launch of SPOT 1 in 1986 

provided high resolution (10m) Pan images and low resolution (20m) MS images (Zhang, 

2004). Since that time, numerous academic papers on image fusion have been published 

to develop effective image fusion techniques, but the methods used have not always been 

successful or provided meaningful results. Pohl and Van Genderen (1998) referenced 

approximately 150 academic papers on image fusion in a review article on multisensor 

image fusion techniques. The emphasis in these publications has been on improving 

fusion quality and reducing colour distortion. Among the hundreds of variations of image 

fusion methods, the most popular and effective are Red-Green-Blue-Intensity-Hue-

Saturation (RGB-IHS), Principal Component Analysis (PCA), Synthetic Variable Ratio 

(SVR), arithmetic combinations, and wavelet base fusion (Zhang 2004; Forsythe 2004). 

However, until now these methods were all limited by certain drawbacks. RGB-IHS 

transformation yields enhanced imagery, but the spectral characteristics of the data are 

destroyed (Cheng et al., 2000). Other techniques such as PCA and SVR also provide 

enhanced data, but have problems, particularly with colour distortion (Forsythe, 2004). 
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Another common problem is that the fusion quality often depends upon the operator’s 

fusion experience, and upon the data set being fused (Zhang, 2004). In addition, there is 

inevitably a difference in the time of acquisition between images obtained from different 

sensors. Zhang (2001) had a gap of over 2 years between Landsat TM and SPOT 

panchromatic data that were used for image fusion. Over this time period there would 

have been some land use change, causing problems with the accuracy of the fused results 

(Forsythe, 2004).  

Currently no automatic solution has been achieved to consistently produce high 

quality fusion results for different datasets; however the new statistics- based 

PANSHARP module (implemented in the PCI Geomatica software) shows significant 

promise as an automated technique (Zhang, 2004). The PANSHARP method solves the 

two major problems in image fusion, colour distortion and operator (or dataset) 

dependency. It differs from existing fusion techniques in two ways. PANSHARP utilizes 

the least squares statistical techniques to find the best fit between the grey values of the 

image bands being fused and to adjust the contribution of individual bands to the fusion 

result to reduce colour distortion. Secondly, it employs a set of statistical approaches to 

estimate the grey value relationship between all input bands to eliminate the problem of 

dataset dependency (i.e. reduce the influence of dataset variation) and to automate the 

fusion process (Zhang, 2004). Due to the minimized colour distortions, maximized detail, 

and natural colour and feature integration, the PANSHARP method is ideal for detecting 

changes in an urban setting. 
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2.3 Strategies for Urban Change Detection Analysis and Remote Sensing  

Imagery 

 

The basic premise in utilizing remotely sensed imagery for change detection 

analysis is that changes in the objects of interest will result in changes in reflectance 

values or local textures which are separable from changes caused by other factors such as 

differences in atmospheric conditions, illumination, viewing angles, and soil moisture. 

Regional land cover changes brought about by human activity tend to occur 

incrementally, and it can be difficult for communities to realize the extent of their 

development and therefore, the changes in their environment (Arthur et al., 2000).  

In the past, the majority of remote sensing applications were concerned with 

natural area management when looking at land use changes. Recently however, a trend 

has emerged toward the analysis of urban environments as platforms such as Landsat 7 

can provide the detail required (i.e. building characteristics) which were unobservable 

using 80m Multi-spectral Scanner (MS) and 30m Thematic Mapper (TM) data (Forsythe, 

2004).  

A variety of landcover change detection techniques exist for satellite imagery, but 

varying levels of success have been achieved. The accuracy of change detection results 

depend on many factors, which include:  

(1) precise geometric registration between multi-temporal images, 

(2) calibration or normalization between multi-temporal images, 

(3) availability of quality ground truth data,  

(4) the complexity of landscape and environment of the study area, 

(5) change detection methods or algorithms used, 

(6) classification and change detection schemes, 

(7) analyst’s skills and experience, 

(8) knowledge and familiarity of the study area, and  

(9) time and cost restrictions (Lu et al., 2003). 
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Because of the impacts of complex factors, different authors often arrive at 

different and sometimes controversial conclusions about which change detection 

techniques are most effective. When study areas and image data are selected for research, 

identifying a suitable change detection technique becomes of great significance in 

producing good quality change detection results (Lu et al., 2003). 

Generally speaking, these techniques can be separated into two classes: (1) 

detection of changes in independently-produced classifications and (2) determining 

change directly from radiometry (Malila, 1980; Lambin and Strahler, 1994). Despite the 

success of some authors using independently produced classifications (Royer and 

Charbonneau, 1988), most researchers (Ridd and Liu, 1998; Masek et al., 2000; Forsythe, 

2004) suggest image radiometry is the best method for improved urban growth estimates. 

With most image analysis applications, the goal is to produce classified end products 

through either supervised or unsupervised methods. The problem with using either of the 

methods over multi-temporal periods of imagery is that the classification errors will 

propagate over the length of the analysis period (Masek et al., 2000; Yang and Lo, 2002). 

It is therefore more efficient to directly use radiometry, which should be relatively 

constant, if the image acquisition dates are consistent (e.g. year to year) and the data are 

from the same satellite platform (Forsythe, 2004). Specific approaches of radiometric 

analysis include: band-by-band image differencing, image ratioing, change vector 

analysis (CVA), and vegetation index differencing. These methods have a common 

characteristic in that they each select thresholds to determine the changed areas over 

several temporal periods. It is, however, critical that suitable image bands or vegetation 

indices are selected and suitable threshold values are determined to ensure accurate 
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change detection results (Lu et al., 2003). Jensen and Toll (1982) were able to detect, 

with reasonable accuracy, urban growth in Denver, Colorado utilizing Landsat MSS 

(Band 5) data. Ridd and Liu (1998) compared image differencing, regression methods, 

Kauth-Thomas transformation, and Chi-square transformation for urban land use change 

detection in the Salt Lake Valley area using Landsat TM data. They concluded TM Band 

2 differencing and its regression were the best methods for producing an accurate account 

of urban land cover change. Stow et al. (1990) found that ratioing multi-sensor, multi-

temporal satellite image data produced higher urban land-use change accuracy than did 

principal component analysis (PCA). Masek et al. (2000) and Johnston and Watters 

(1996) used MSS and TM data in a Normalized Difference Vegetation Index (NDVI) 

subtraction approach for successful urban change detection in Washington, D.C. and 

achieved accuracy figures of approximately 85%. Lyon et al. (1998) compared seven 

vegetation indices from three different dates of MSS data for land cover change detection 

and concluded that the NDVI technique demonstrated the best vegetation change 

detection.  

In algebra-based change detection methods, image differencing is the most often 

used method (Lu et al., 2001). However, different authors (Stow et al., 1990; Johnston 

and Watters, 1996; Lyon et al., 1998; Ridd and Liu, 1998; Masek et al., 2000) have 

arrived at different conclusions with regards to which method provides the best results 

among the image differencing, image ratioing, vegetation index differencing, and CVA 

approaches, since results vary depending on the study areas and image data used as stated 

previously.  
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Chapter 3: Methodology  

 

The proceeding five sections outline the data and methodology used in this study. 

Specifically, Section 3.1 describes the properties of the Landsat 7 imagery and the 

geographical scale employed for the analysis as well as the methodological approach 

followed in this study. Section 3.2 outlines the various classification inputs used for the 

analysis, while Section’s 3.3 and 3.4 describe how the unsupervised classification and 

radiometric band differencing techniques were carried out. Finally, Section 3.5 outlines 

the processing carried out via GIS to arrive at the final change detection map. 

 

3.1 Data  

 For this study, two Landsat 7 Enhanced Thematic Mapper (ETM+) images were 

acquired for the Vancouver CMA study area. Both images were acquired on Path 47 Row 

26. The dates of image acquisition were: July 28, 1999 (Figure 3.1a) and September 22, 

2002 (Figure 3.1b). Census Consolidated Subdivisions (CCS) were employed as the 

geographical unit of scale for the analysis. The concept of a CCS is a grouping of small 

census subdivisions within a containing census subdivision (CSD), created for the 

convenience and ease of geographic referencing (Statistics Canada, 2002). The CCS scale 

was deemed suitable for the scope of this study as nine CCS compose the Vancouver 

CMA allowing for ideal analytical discussion and visualization. 
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 Figure 3.1a: July 28, 1999 Landsat 7 image of Vancouver CMA 

 

 

 

 Figure 3.1b: September 22, 2002 Landsat 7 image of Vancouver CMA 
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Figure 3.2 conceptualizes the research approach, while the latter sections elaborate on the 

various methods undertaken. 
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Figure 3.2: Conceptual Diagram of Research Approach  
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3.1.1 Pansharpened Imagery 

 

The data fusion process was carried out using the PCI Geomatica pansharpening 

(PANSHARP) algorithm for the two Landsat scenes. Both images were fused (using 

PANSHARP) to a 15m resolution. The images were previously orthorectified to the 

NAD83 (GRS1980) UTM Zone 10 projection.  

 

3.2  Classification Inputs 

 

A combined unsupervised classification and radiometric band differencing 

approach was used to differentiate between true urban development and changes that 

occur as a result of other processes (e.g. agricultural crop rotation, crop harvesting).  

 

3.2.1  Normalized Difference Vegetation Index (NDVI) 

Spectral radiance values captured by Landsat 7’s ETM+ can be analyzed 

independently on a band by band basis or in combinations of two or more bands. One of 

the most commonly used band combination techniques in vegetation studies is band 

ratioing (Curran 1981; Tucker 1979). In vegetation studies, the ratios, commonly known 

as vegetation indices, have been developed for the enhancement of spectral differences 

on the basis of strong vegetation absorbance in the red and strong reflectance in the near-

infrared part of the spectrum. The Normalized Difference Vegetation Index (NDVI) is an 

index that provides a standardized method of comparing vegetation greenness between 

satellite images. The formula to calculate NDVI is:  

NDVI = (near IR band - red band) / (near IR band + red band)  
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Index values have been shown to range from -1.0 to 1.0, but vegetation values typically 

range between 0.1 and 0.7. Higher index values are associated with higher levels of 

healthy vegetation cover, whereas clouds and snow result in index values near zero 

(University of Arizona, 2002). Considering that urban expansion is often accompanied by 

vegetation recession, urban development information could be obtained indirectly by 

indexing the vegetation condition over multi-temporal periods. With respect to the 

Landsat ETM+, bands 3 (0.63-0.69 µm) and 4 (0.75-0.90 µm) serve as the appropriate 

inputs for generating the NDVI imagery for the two temporal periods. NDVI values were 

calculated for the two temporal periods using a NDVI algorithm developed for PCI 

Modeller. Figure 3.3 illustrates the NDVI results (for subsets of the images) for the two 

temporal periods. The subset images are intended to highlight the utility of each input for 

the unsupervised classification procedure. The area selected for all subset images is 

located in the region of Port Coquitlam, contained within the Greater Vancouver CCS. 

Clear differences can be depicted in this area over the three year study period which 

makes it an optimal location for highlighting the various layers used in the analysis. 

 

 

Figure 3.3: NDVI for 1999 (left) and 2002 (right) 
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New development is evident in the top left portion of the 2002 subset image, signified by 

the new dark areas representing low NDVI values. These areas are representative of new 

housing developments, presumably two new subdivisions located on the outskirts of Port 

Coquitlam. The NDVI values in the image can be directly related to the amount of 

photosynthetic (green) biomass within a pixel. Progressive increases from dark (black) to 

light (white) shades signify increasing levels of vegetation. Since urbanization in non-arid 

regions replaces vegetation (high NDVI) with building materials (low NDVI), sudden 

decreases in NDVI should indicate new urban development (Masek et al., 2000).  

3.2.2  Principal Component Analysis (PCA)  

 

 The PCA technique is used to reduce the number of spectral components to fewer 

principal components which account for the most variance in multispectral images 

(Singh, 1989). When carried out as a pre-processing procedure prior to automated 

classification, PCA transformations generally increase the computational efficiency of the 

classification process because the PCA may result in a reduction in the dimensionality of 

the original dataset (Lillesand et al., 2004). The first Principal Component (PC) stores the 

maximum contents of the variance of the original data set. The second PC describes the 

largest amount of the variance in the data that is not already described by the first PC, and 

so forth (Taylor, 1977). Although ‘n’ number of principal components may be acquired 

in the analysis, only the first few principal components account for a high proportion of 

the variance in the data. In some situations, almost 100 percent of the variance can be 

captured by these few components. Fung and LeDrew (1987) indicated that the first four 

components can contain more than 95 percent of the total variance and the other 

remaining components have little useful information for land use change. 
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 PCA was carried out on the images using the PCA algorithm within PCI 

Geomatica. The first two components were utilized as they captured 99.13% of the 

variance within the image (Table 3.1). 

Table 3.1: PCA Statistics  

PC Eigenvalue Deviation % Variance 

1 385.2874 19.6287 96.87% 

2 8.9969 2.9995 2.26% 

 

 

These components serve as a valuable additional input into the classification procedure as 

pertinent class identification information is easily highlighted via the variance captured. 

Forsythe (2002) indicated that PC2 clearly illustrated newly disturbed areas for urban 

development in Toronto, Ontario but in this study such change was not evident. Instead, 

PC1 served as a better input for classification (Figure 3.4). 

 
Figure 3.4: PC1 for 1999 (left) and 2002 (right) 

 

3.2.3  Image Texture Analysis 

Texture is an important characteristic used to identify objects or regions of 

interest in an image. Unlike spectral features, which describe the average tonal variation 
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in the various bands of an image, textural features contain information about the spatial 

distribution of tonal variations within a band (PCI, 2004). Texture is typically defined by 

the multidimensional variance observed in a moving window passed through an image 

(e.g. a 3x3 window). It is the image analyst’s duty to set a variance threshold below 

which a window is considered “smooth” (homogeneous) and above which it is considered 

“rough” (heterogeneous) (Lillesand et al., 2004). The textural properties discerned from 

these windows can assist in delineating urban classes and can aid in the separation of 

classes where agricultural crop rotation can be mistaken for urban change (Forsythe, 

2004).  

Several textural trial runs were carried out utilizing various texture algorithms and 

window sizes (e.g. 3x3, 7x7). It was discovered that optimal results were generated via a 

3x3 window (homogeneity option) performed on band 2 (Figure 3.5). 

 
Figure 3.5: Image Texture (derived from band 2) for 1999 (left) and 2002 (right)  
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3.2.4  Digital Elevation Model (DEM) and Slope 

 

DEM’s and slope values are useful inputs into the classification procedure as they 

are able to distinguish between mountain peaks and urban areas which possess similar 

spectral reflectance characteristics. A 30m DEM and slope values were used as a 

classification input to discern these features and improve classification accuracy. The 

DEM was obtained through DMTI Spatial and the slope was derived using the SLOPE 

function in PCI Geomatica software. Figure 3.6 illustrates the extent of the DEM draped 

with the original 2002 pansharpened image. 

 

 
Figure 3.6: DEM draped with original 2002 pansharpened for the Vancouver CMA 

(Vertical Exaggeration 2.5, View Angle 45 degrees). 
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3.3  Unsupervised Classification and Aggregation 

 

Unsupervised classification methods utilize algorithms (i.e. K-Means) that 

examine the unknown pixels in an image and aggregate them into a number of classes 

based on the natural groupings or clusters present in the image values. The basic 

assumption is that values within a given cover type should be close together in a multi-

dimensional spectral space, whereas data in different classes should be comparatively 

well separated (Chen and Lee, 2001). Unlike supervised classification, the classes that 

result from unsupervised classification are spectral classes because they are solely based 

on the clusters in the image values and the identity of the spectral classes is not initially 

known.  

 An unsupervised, fuzzy k-mean classification was performed in PCI Geomatica 

to derive the three land cover classes. Several experimental trial procedures were carried 

out to determine which clustering algorithm provided the most favourable results for the 

images under investigation including K-means, Fuzzy K-means, and ISODATA 

approaches. Similar to Forsythe (2004), an unsupervised classification utilizing 255 

classes proved to provide the best separation between non-developed and developed 

classes. Table 3.2 outlines the three classes and the layer inputs that were used for class 

derivation.  

 

Table 3.2: Derived aggregate classes and layer inputs  

Class Inputs 

Non-Developed Landsat bands 5 and 7, DEM, slope, 3x3 texture, NDVI, PC1 

Water Landsat bands 1-5, and 7, DEM, slope, 3x3 texture, NDVI, PC1 

Developed Landsat bands 5 and 7, DEM, slope, 3x3 texture, NDVI, PC1 
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The selection of inputs for class derivation was based on the suitability of the layers to 

depict each land cover class. For example, Landsat bands 1-4 were not suitable for 

deriving the developed and non-developed classes, but proved to be very useful for 

generating the water class due to the inherent spectral properties. In contrast, the 

remaining inputs (i.e. Band 7, DEM, slope, 3x3 texture, NDVI, and PC1) provided useful 

information for deriving all three classes due to the geospatial and spectral information 

contained within each input layer.  

 

3.4  Radiometric Band Differencing Inputs 

 

 One of the most widely used types of unsupervised change detection techniques is 

focused around the difference image. These techniques process two multi-spectral 

images, acquired at two different dates, in order to generate a further image. The 

computed difference image is one in which the values of the pixels associated with land 

cover changes present values significantly different from those of the pixels associated 

with unchanged areas (Bruzzone, 2000). Changes are then identified by analyzing (e.g. 

thresholding) the difference image. Two subtractive differencing operations were carried 

out using NDVI imagery and Band 2 data from 2002 and 1999. The resulting difference 

images were subjected to an ISODATA classification in which the minimum (7), 

maximum (10), and desired (7) change classes were selected. The resulting classified 

images were the optimal number of change classes determined using the ISODATA 

algorithm (NDVI [6], Band 2 [9]) (Figure 3.7). The classified ISODATA images were 

analyzed for the accuracy and consistency of detecting newly developed areas. Of note, 

the Band 2 difference image exhibited better results with regard to newly developed areas 

as more change classes were generated from the image pixels. Whereas the Band 2 
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difference image clearly separated developed from non-developed areas, the NDVI 

difference image exhibited classes containing both developed and non-developed change 

areas and was therefore not used in the analysis. 

 
Figure 3.7 NDVI differencing for 2002 minus 1999 (left) with 6 change classes and 

Band 2 differencing for 2002 minus 1999 (right) with 9 change classes 

 

The Band 2 change classes were then aggregated to isolate development from 

other change classes and a binary raster layer (new development =1, all other change 

classes = 0) was created so that overlay operations could be carried out in accordance 

with the aggregate 2002 image in ArcGIS. 

 

3.5  GIS Processing  

The classification aggregation results were exported from PCI Geomatica as 

Erdas Imagine (.img) files for further analysis in ArcGIS. The raster calculator was used 

to combine the aggregate change class results (Figure 3.7 above, Band 2) and the 2002 

aggregate image (Figure 3.8). The addition of these two areas allowed for accurate urban 

change results. This layer was then aggregated to non-developed, water, developed, and 

newly developed. 
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Figure 3.8: 2002 Aggregate Classification for entire analysis area (black = non-

developed, grey = water, white= developed). Yellow box (Top right subset) indicates 

the location of the subset images from Figures 3.3, 3.4, 3.5, 3.7. 
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Chapter 4: Results and Discussion 

  

The following sections discuss the results and findings of the change detection 

analysis. In particular, Section 4.1 highlights the area calculations for the four classes 

analyzed and discusses the extent of urban development in the nine CCS comprising the 

Vancouver CMA. Section 4.2 outlines the results of the accuracy assessments performed 

on the final change detection map and describes some of the discrepancies discovered in 

the analysis classification procedure. 

 

  

4.1 Calculation of Class Areas and Development Discussion 

Class Areas were determined using ArcGIS for the four land cover classes by 

multiplying the number of raster cells for each class by the raster resolution (15m x 15m= 

225m2) and dividing by 1000000 (1000m2 = 1km2). The resulting areas values for newly 

developed and redeveloped land are presented in Table 4.1.  

 

Table 4.1: Class Areas: 2002-1999 (clipped to CMA boundaries) 

Class Name Area (km2) 

Non-Developed 

Water 

Developed 

Newly Developed 

2064.07 

 279.16 

 602.57 

 17.60 

Total area analyzed: 2963.40km2 

 

 

These area parameters suggest that on average the Vancouver CMA has experienced 

5.87km2 of new development per year from 1999-2002. While this figure represents the 

new development that has occurred throughout the entire CMA region, a more detailed 

analysis of the separate CCS will highlight those areas that have experienced the most 
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growth during this period. The following figures depict each CCS within the CMA region 

using the original pansharpened imagery and aerial photography to highlight the new 

urban development that has occurred from 1999-2002. The pie graphs illustrate the 

percentage of each land class with respect to the total land area in the CCS. In addition, 

Table 4.2 summarizes each CCS by class area statistics. 

 

Table 4.2: Breakdown of Class Areas (km2) by CCS 
CCS Aggregate Classes 
 Non-Developed Water Developed New Developed 

Burnaby 39.07 7.72 65.64 0.97 

Delta 123.09 75.31 59.69 3.99 

Greater Vancouver 1022.40 92.21 106.06 2.95 

Langley 259.31 7.50 58.13 1.87 

Maple Ridge 243.50 14.91 26.36 0.82 

Pitt Meadows 74.91 8.04 11.84 0.90 

Richmond 69.83 9.09 55.02 1.89 

Surrey 198.79 54.62 123.67 3.51 

Vancouver 33.18 9.76 96.17 0.70 

Total 2064.07 279.16 602.57 17.60 

 

 

 

In Delta (Figure 4.1), the 3.99km2 of new development has occurred 

predominantly in the north-east sector and the Tilbury area as highlighted in the subset 

images of Figure 4.2. Evidence of new development is also clear in the Ladner and 

Tsawwassen areas where the majority of land transformations have been from 

agricultural fields to new urban development. In saying this, most change is likely a result 

of land excavation activities where fallow fields have been converted into land awaiting 

new development.  
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The region of Surrey (Figure 4.3) has also experienced ample new development, 

accounting for 3.51km2 over the three year period. Overall, new development is dispersed 

throughout the region with considerable development arising in Guildford, Port Kells, 

and the south sector of the CCS (Figure 4.4). 

Figure 4.1: Air Photo of Delta CCS 

Source: Waite Air Photos Incorporated, 2004 
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     Figure 4.2: Development Results for Delta CCS 
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The vast region of Greater Vancouver (Figure 4.5) has experienced 2.95km2 of 

new development, clearly evident in three main centres pictured in Figure 4.6. In the 

North Vancouver sector, newly developed areas are clearly visible in the Lonsdale and 

Lynn Valley areas where new areas have arisen close to the shores of the Burrard Inlet.  

Port Moody has been the area of choice for new development in the Greater Vancouver 

area with major developments occurring in the Heritage Mountain and Anmore regions.  

 

 

 

Figure 4.3: Air Photo of Surrey CCS 

Source: Waite Air Photos Incorporated, 

2004 
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    Figure 4.4: Development Results for Surrey CCS 
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Figure 4.5: Air Photos of Greater Vancouver CCS; clockwise from top left- North 

Vancouver, Port Moody, Port Coquitlam, Coquitlam.  

Source: Waite Air Photos Incorporated, 2004 

 

 

 

 

In addition, the regions of Port Coquitlam and Coquitlam have also boasted newly 

developed urban areas. Most notably, the downtown area and southern portion of 

Coquitlam have seen development occur, as well as the central region of Port Coquitlam. 
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    Figure 4.6: Development Results for Greater Vancouver CCS 
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The CCS of Richmond (Figure 4.7) has also experienced considerable 

development, adding approximately 1.9km2 from 1999-2002. Generally speaking, the 

majority of newly developed areas have occurred in the North, East, and South sectors of 

the area (Figure 4.8). In contrast, the West sector and Town centre areas have 

experienced little development as a result of the dense urban landscape that already 

exists. Notably, some expansion can also be seen at Vancouver International Airport 

which has seen additional buildings added to the existing terminal centre. 

 

 
Figure 4.7: Air Photo of Richmond CCS 

Source: Waite Air Photos Incorporated, 2004 
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    Figure 4.8: Development Results for Richmond CCS 
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The Langley region (Figure 4.9) has also seen development throughout the region, 

adding 1.87km2 over the study period. Most notably, newly developed areas are evident 

in Langley City to the East and the regions of Glen Valley and Aldergrove to the west 

(Figure 4.10). In particular, immense development can be witnessed in the Glen Valley/ 

Gloucester Estate region where an apparent new subdivision has been added to the 

landscape in the south-eastern portion. 

 

 

 

 
Figure 4.9: Air Photo of Langley CCS 

Source: Waite Air Photos Incorporated, 2004 
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    Figure 4.10: Development Results for Langley CCS 
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In contrast to the above mentioned CCS regions, the areas of Burnaby, Pitt 

Meadows, Maple Ridge, and Vancouver have experienced very little development 

between the subsequent years mentioned. Combined, these regions account for only 19% 

of the total developed area in the Vancouver CMA.  

Burnaby (Figure 4.11) experienced the majority of development in the Big Bend 

and University & Lake City areas (Figure 4.12), resulting in 0.97km2 of newly developed 

land. Similarly, the Pitt Meadows region (Figure 4.13) only experienced newly developed 

land in its Downtown and Western sectors (Figure 4.14), adding just 0.89km2 over the 

three year period. 

 

 
Figure 4.11: Air Photo of Burnaby CCS 

Source: Waite Air Photos Incorporated, 2004 
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       Figure 4.12: Development Results for Burnaby CCS 
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Figure 4.13: Air Photo of Pitt Meadows CCS 

Source: Waite Air Photos Incorporated, 2004 

 

 

 

 Maple Ridge (Figure 4.15) experienced the second lowest amount of 

development (0.82km2) over the three year period. Similar to past development patterns, 

newly developed areas were only evident in the West and Central sectors close to the 

Fraser River (Figure 4.16). Given this region is located the furthest distance from the 

urbanized core of Vancouver and consists of predominantly mountainous greenspace 

(86% of total land area), the low demand for housing does not come as a surprise as both 

physical and human constraints decrease development activity.  
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 Figure 4.14: Development Results for Pitt Meadows CCS 
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Figure 4.15: Air Photo of Maple Ridge CCS 

Source: Waite Air Photos Incorporated, 2004 

 

 

Finally, the heavily urbanized Vancouver region (Figure 4.17) exhibited the 

lowest amount of developed area in the study period, adding only 0.7km2. Given the 

Vancouver region is the oldest and most urbanized area within the CMA district, such 

sparse development within the Central and Eastern sectors (Figure 4.18) is not surprising 

as little greenspace remains within the region. For this region, most development occurs 

in the form of redevelopment as little greenspace remains in the urbanized core of the 

City, with the exception of Stanley Park. 
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 Figure 4.16: Development Results for Maple Ridge CCS 



 49 

 
Figure 4.17: Air Photo of Vancouver CCS 

Source: Waite Air Photos Incorporated, 2004 

 

 

Overall, it is clear that the growth of developed areas throughout the CMA is not 

uniform. In fact, the majority of new growth from 1999-2002 occurred in only three of 

the CCS regions. While this unequal pattern may appear troublesome to some 

individuals, it is in direct accordance with the area’s Strategic Plan for the coming years; 

concentrating a large share of population, and correspondingly new housing, in the 

Burrard Peninsula, the North East Sector, North Surrey and North Delta which is evident 

in the above figures. In saying this, these growth patterns not only illustrate that growth is 

being concentrated in a sustainable manner, but new urban development is not 

encroaching on the region’s valuable greenspace areas. 
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    Figure 4.18: Development Results for Vancouver CCS 
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4.2 Accuracy Assessment  

Classification accuracy analysis is one of the most active research fields in remote 

sensing. It is always claimed in the remote sensing community that a classification is not 

complete until its accuracy is assessed (Lillesand et al., 2004). One of the most common 

methods of expressing classification accuracy is the preparation of a classification error 

matrix (or confusion table). The error matrix compares the relationship between the 

known reference data (based on pixel values) for each cover class and the corresponding 

results of the classification. Accuracy statistics are generated for each class based on the 

consistency of the classified image and the known pixel values for each class to be in 

accordance with one another. 

An accuracy assessment was performed on the aggregate classification to determine the 

reliability of the results generated. To ensure equal distribution of sampling points within 

each class, 100 points were generated for the non-developed, water, and developed 

classes and saved as separate vector files. The resulting vector segments were then 

merged using the VECMERG algorithm within PCI Geomatica to arrive at the 300 point 

sample. Table 4.3a and b outline the accuracy statistics. 

Table 4.3a: Accuracy Statistics 

Overall Accuracy: 89.333%- 95% Confidence Interval (85.674% 92.993%) 

Overall Kappa Statistic: 0.839% - Overall Kappa Variance: 0.001%  

 

 Class Name Producer’s 

Accuracy 

95% Confidence 

Interval 

User’s 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Non-Developed  87.96% (81.36% 94.56%)  84.07% (76.88%91.26%) 0.7511 

Water  98.02% (94.81%101.23%)  99.00% (96.55%101.45%) 0.9849 

Developed*  81.32% (72.76%89.88%)  85.06% (76.99%93.12%) 0.7855 
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Table 4.3b: Accuracy Statistics- Error (Confusion) Matrix  

Classified  

Data 

Reference Data  

Totals Non-Developed Water Developed 

Non-Developed 95 1 17 113 

Water 1 99 0 100 

Developed* 12 1 74 87 

Totals 108 101 91 300 

*Includes developed and newly developed classes 

 

Because the newly developed class exhibited a relatively small areal extent, with respect 

to the other classes, it was grouped with the existing developed class to ensure that 

enough random sampling points were generated for each class. Significantly, notable 

discrepancies were evident in the developed class where 17 of the 91 sampling points 

were misclassified as non-developed land. In general, these misclassifications are 

attributed to two main factors. Firstly, discrepancies were evident between crop 

rotation/harvesting practices and newly developed areas as they possessed similar 

spectral signatures. Most notably, the 2002 aggregate classification exhibited 

discrepancies in the Delta and Richmond areas where agricultural practices were in some 

cases mistaken for new urban development. This disparity is a clear result of the two 

month period separating the July and late September acquisition dates and the varying 

agricultural regimes that occurred between these dates. Secondly, the immense and 

sudden changes in topography throughout the CMA region also proved to be a problem in 

classification procedures. Snow laden mountain slopes exhibited very similar spectral 

properties as flat urban areas. Despite the use of the DEM and slope layers, 

misclassification was unavoidable in some instances and some areas that were obviously 

non-developed were grouped with the developed class. However, despite these 

discrepancies, the classified image represented the area quite well overall and the 
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accuracy figure of almost 90% illustrates the effectiveness of pansharpened imagery for 

land cover classification procedures. The 90% overall accuracy figure must be analyzed 

in relation to the individual class accuracy statistics. Most notably, the water class, with 

an accuracy figure of almost 100%, can be attributed to its distinct spectral values and 

ease of classification. The developed and non-developed classes possess accuracy values 

of approximately 83% and 86% respectively, and illustrate the difficulties that arise in 

differentiating between these two classes. While the water accuracy statistics may slightly 

inflate the overall accuracy figure, the accuracy of the developed and non-developed 

classes is still highly respectable. 
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Chapter 5: Conclusion 

 

 Medium and high-resolution, multi-spectral remote sensing images are an 

important data source for acquiring large-scale and detailed geospatial information for 

urban change detection studies. Landsat 7’s ETM+ data, coupled with improvements to 

statistics-based image fusion techniques have provided the remote sensing user 

community with an opportunity to carry out cost effective and accurate change detection 

studies. Notably, pansharpened methods allow users to improve on past change detection 

techniques as overall classification accuracies are much higher (90-97%) than those 

achieved using traditional methods (75-85%). From this study, pansharpened imagery 

proved to be an accurate source for detecting new urban development and redevelopment 

in the Vancouver CMA with an overall classification accuracy of approximately 90%. In 

addition, the ease of implementation into a GIS for further analysis using reclassification 

and binary calculation procedures further signifies the utility of pansharpened imagery 

for change detection studies.  

Overall, growth parameters and change statistics provided useful insight into the 

magnitude of urban change that is occurring in the Vancouver CMA area. In particular, 

the breakdown and discussion of each CCS comprising the CMA region was very 

successful in discerning new urban development and redevelopment in particular urban 

areas over the three year study period. The usefulness of these findings to planners and 

managers alike is immense. Quick and accurate growth statistics are realistic and cost-

effective using pansharpened imagery and have the ability to illustrate a timeline 

sequence of new urban development over varying temporal periods. The ability of the 

pansharpened imagery to clearly depict land cover classes with tremendous spatial detail 
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is evident. For decision-makers, this approach can help detect where development is 

likely to occur based on past development patterns and current land availability. The 

value of this study stems from its ability to highlight the current status of urban change in 

the Vancouver CMA and to provide ample evidence that the region’s growth strategy is 

being followed for the three year period under investigation.  

With the current status of the Landsat 7 satellite and its SLC problems, future 

studies using pansharpened imagery from this platform is unlikely. However, SPOT or 

other satellite data and Landsat 5 TM data could possibly be used in future change 

detection studies as this study provides a clear and accurate framework for future 

replication. Such studies would not only highlight the usefulness of this application for 

urban change analysis, but the findings may prove to be superior to the current techniques 

being carried out.  

For the Vancouver CMA, what the near future holds for urban development will 

be directly related to the immigrant population, natural growth processes, and perhaps 

even the upcoming Olympics. If past population patterns return to the CMA region, a 

sudden influx of new arrivals could generate tremendous development throughout the 

CMA area. However, for the period of study investigated, the Vancouver CMA 

demonstrated that sustainable development is a planning concept that benefits 

development and the environment. Currently, planners and managers should be 

capitalizing on the usefulness of remotely sensed pansharpened imagery so that an 

accurate snapshot of development patterns can be captured and new policies formulated 

based on accurate pansharpened results. 
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