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Abstract  

Lake Urmia, located in the Iranian provinces of West and East Azerbaijan, has been gradually, 

yet dramatically shrinking since the late 20th century. Surface water fluctuation up until the late 

1990’s never caused any reason for alarm. Since 1998, Lake Urmia has lost a devastating amount 

of water. Reasons for the lakes demise have been related to climate change and poor water 

resource management practices within the lakes watershed. If predictions of total drought become 

a reality, millions of people living within the Lake Urmia watershed will be faced with life 

altering environmental conditions. A remote sensing based analysis of multispectral imagery was 

used to identify changes in key features (lake water, saline features and agricultural land) and 

analyze the magnitude of salinization over space and time. Landsat 5 (1990, 1998, and 2006) and 

Landsat 8 (2013) images (acquired from USGS Earth Explorer) were analyzed at approximately 8 

year intervals between 1990 and 2013. Spectral bands from the visible and near-infrared (VNIR) 

range were used to classify features; with the additional inputs of the thermal infrared (TIR) and 

Tasselled Cap Transformation (TCT) bands to highlight the reflectiveness of features. Change 

detection analysis of the results highlighted an alarming surface water decrease and expansion of 

saline features during the analysis period. From 1998 to 2013:  water area decreased by 3146 km² 

from a maximum extent of 4995 km²  to 1849 km², saline features increased by 898 km² to cover 

an area of 1022 km² from 124 km² and vegetation cover increased from 1159 km² to 1656 km². 
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CHAPTER ONE: Introduction  

One of many adverse environmental impacts of a shrivelling water cycle is the process 

and presence of salinization. Saline environments can result from naturally occurring (product of 

primary salinity), or human-induced (secondary salinity) processes (Allbed and Kumar, 2013). Of 

greatest concern to environmental scientists are the nature of anthropogenic activities that directly 

or indirectly contribute to rising concentrations, and the distribution of saline evaporites. Causes 

of salinization are commonly attributed to irrigation practices, industrial pollutants, as well as 

infrastructure related to urban growth and resource extraction (Podmore, 2009).  

Water volume loss occurs during dry, drought-like conditions. As saline water 

evaporates, salt particles are precipitated onto the shoreline. When exposed on bare land, saline 

minerals can be transported in windstorms and deposited elsewhere. Salt storms cause intolerable 

air quality conditions for people, animals, vegetation and infrastructure (Pengra, 2012). Inhaling 

suspended saline particles has been attributed to cases of esophagus cancer, respiratory disease 

and birth defects reported in the Middle East (Pengra, 2012). Transporting saline evaporites into 

intolerant ecosystems can fatally impact fragile crops and vegetation. As well, the abrasive nature 

of wind-transported saline particles can cause physical or chemical erosion to the exterior of 

buildings or infrastructure. Salt storms, similar to sand storms, can move suspended saline 

particles around a radius of 500 km from the storms start point (Garousi et al., 2013). Damage 

from the resulting salt deposits has harmful effects on the local environment and in surrounding 

regions. Neighbouring countries to Iran, including Turkey, Iraq, Azerbaijan and Armenia may 

also experience the devastating effects of salt storms (Garousi et al., 2013). This may induce 

trans-border environmental hazards, pose questions of responsibility for the source of 

environmental degradation, and raise concerns of environmental justice. 
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1.1 Image Analysis of Remote Environments  

Satellite imagery provides means of interpreting and monitoring environmental 

conditions, without the cost, difficulties or time consuming nature of fieldwork. Isolated 

environments are typically under surveyed and are poorly represented by spatial data. In some 

cases, where little fieldwork has been done, geographic data are limited to satellite and aerial 

imagery. This is not to say that remote environments are necessarily distant from populous city 

centres. Acquisition and accessibility of spatial data and imagery can be limited, or non-existent 

for political or economic reasons; therefore an otherwise urbanized environment is poorly 

represented by geospatial data, resembling the analytic limitations of remote environments 

(Eimanifar and Mohebbi, 2007).  

 

1.2 Study Area  

Lake Urmia, located in northwestern Iran, lies on the border of East and West Azerbaijan 

Provinces (Figure 1.1) in the Turkish-Iranian Plateau. The lake is situated at the intersection of 

the Armenian Highlands and the Iranian Plateau. Four mountain ranges surround Lake Urmia; 

Caucasus Mountains (north) Sami Dagi Mountains (west), Zagros Mountains (south) and the 

Elburz Mountains (east) (DeLorme, 2012; Esri, 2012; NPS, 2012; USGS, 2012; Google Earth, 

2013).  

Northern Iran is situated amongst numerous climate classifications, according to the 

Köppen-Geiger model, but is typically referred to as a semi-arid or steppe environment 

(Christopherson and Bryne, 2009). Figure 1.2 displays the average monthly temperature (°C) and 

precipitation (mm) for the City of Urmia between 1990 and 2009 (World Bank, 2014). Yearly 

evaporation at Lake Urmia is modelled at 1020mm/year by (Zeinoddini et al., 2014).  
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Figure 1.1: (left) Lake Urmia located in northwestern Iran, (right) separated by the border of West and East 

Azerbaijan and capital cities of Urmia and Tabriz respectively (Source: Google Earth, 2013). 

 

 

Figure 1.2: 1990 to 2009 average monthly temperature (°C) and precipitation (mm) counts (World Bank, 

2014) 

 

Lake Urmia is characteristically a hypersaline, endorheic lake with salinity levels 

measured at 300g/L in 2012 (Pengra, 2012). From a surface size of 6,100 km² in 1995 to 2,366 

km² in 2011, the lakes salinity has surpassed sustainable concentrations for brine tolerant species 

in a saline environment (Pengra, 2012). The lakes shrinking size has been attributed to climate 
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change (Abbaspour et al., 2012), poor water management (Garousi et al., 2013), the construction 

of a pipeline to Tabriz (Khalyani et al., 2014) and the Lake Urmia Causeway (Kabiri et al., 2012). 

The pipeline was built in 1999 to withdraw 3 billion m³ of water from the Lake Urmia watershed 

to the capital city of Tabriz (Khalyani et al., 2014). Construction of the causeway took 

approximately 30 years and was completed in 2008 (Khalyani et al., 2014). Built as a solid 16 km 

embankment, a single opening measuring 1.25 km near the centre of the causeway allows limited 

flow from the now divided north and south portions of the lake (Khalyani et al., 2014). The 

purpose of this bridge was to foster better communication and transportation between the highly 

urbanized, and densely populated capitals of West Azerbaijan (Urmia City) and East Azerbaijan 

(Tabriz) (Zarrineh and Azari Najaf Abad, 2014).  

Water loss and increasing salinity within the environment is causing the Lake Urmia 

ecosystem to collapse. Migratory flamingos can no longer feed in Lake Urmia due to high salinity 

depleting their food source (brine shrimp), and causing them physical harm (Pengra, 2012). 

Consequently, ecosystem degradation impacts the economic value of the lake by diminishing one 

of its single most profitable and admirable natural attractions. Increasing salinity throughout the 

extent of Lake Urmia’s drying lake basin is also posing health concerns related to air quality 

(Garousi et al., 2013). Lake Urmia services 76 million people within its watershed (Pengra, 2012) 

of which, 6.4 million rely on the freshwater inputs to the southern portion of the lake for 

irrigation and agriculture (Zeinoddini et al., 2014).  

 

1.3 Research objectives  

 The purpose of this study is to illustrate and quantify environmental degradation and risks 

associated with the relative rate of evaporation and salinization of Lake Urmia. Overall water loss 

is visible in unaltered remotely sensed images (Figure 3.1) yet a change detection analysis will 

represent the trajectory of pixel classification over time. Three time periods were chosen, based 

on available imagery from the United States Geological Survey Earth Explorer (USGS EE), in 
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which change detection analysis will be conducted; 1990 and 1998, 1998 and 2006, 2006 and 

2013. The periods of analysis created encompass times of natural lake fluctuation prior to 1998 

(Zarrineh and Azari Najaf Abad, 2014) leading to unnatural water loss from resource extraction 

to present day (Pengra, 2012). This study attempts to analyze how select features (Water, Saline 

Features, and Vegetation) change over time.  
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CHAPTER TWO: Literature Review  

2.1 Conservation Initiatives and Strategies   

In 1971, Lake Urmia was identified under the Ramsar Convention as a Wetland of 

International Importance, as well as a Biosphere Reserve in 1976 by the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) (Pengra, 2012). Currently, the 

United Nations Development Program (UNDP) recognizes two functioning environmental 

management groups, encompassing government, non-government organizations, and members of 

the public as the National Committee for Sustainable Management of Lake Urmia and the 

Regional Council for Management of Lake Urmia Basin. In 2010, the Integrated Management 

Plan for Lake Urmia Basin was presented via the joint Conservation of Iranian Wetlands Project 

with the United Nations Environmental Program (UNEP), Global Environmental Facility, and the 

Department of Environment (Eimanifar and Mohebbi, 2007). Projected over 25 years 

(commencing in 2010), three management goals are set for the conservation and management of 

Lake Urmia as; “‘To raise awareness of the values of the lake and satellite wetlands and to 

enhance public participation in their management’, ‘Sustainable management of water resources 

and land use’, and ‘Conservation of biodiversity and sustainable use of the wetland resources’” 

(Ramsar, 2010). Regardless of action plans or management group creation, Eimanifar and 

Mohebbi (2007) have highlighted the lack of improvement in the lakes ecosystem, and have 

questioned the reliability of these conservation groups.  

Traditional specializations in water related infrastructure could create opportunities for 

sustainable resource extraction when implemented appropriately (Ayboga and Ilhan, 2012; 

Khalyani et al., 2014; Zarrineh and Azari Najaf Abad, 2014). Khalyani et al. (2014) suggest 

encouraging traditional rain-fed agricultural practices to reduce water waste from irrigation. Iran 

is also one of the most productive countries of damming infrastructure (Ayboga and Ilhan, 2012). 

With the engineering capabilities already present, Ayboga and Ilhan (2012) promote opportunities 

for construction of flow regulating dams, as well as creating comprehensive damming policies.   
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2.2 Saline Evaporites and Features  

Salt and salinity is prominent in arid and semi-arid soils and endangers an already fragile 

environment. Saline soils and salt crusts feature recognizable textures and properties in remotely 

sensed imagery (Srestha and Farshad, 2009). Salt crusts like those visible along the shoreline of 

Lake Urmia (Figure 2.1) exhibit significant texture characteristics that allow for differentiation 

amongst other soil types. When using remote sensing technology to detect saline soils, the 

majority of findings identified saline crusts to appear texturally smoother and more reflective (in 

the visible- near infrared range (VNIR)) than non-saline soils or features (Singh and Sirobi, 1994; 

Metternicht and Zinch, 2003; Allbed and Kumar, 2013). Depending on the predominant mineral 

of a salt crust, reflective properties can vary between puffy salt crusts (sodium sulphates) and 

smooth salt crusts (chlorides), which lead to further indications of soil salinity characteristics in 

the area (Driessen and Schoorl, 1973; Eghbalm et al., 1989).  

 

Figure 2.1: Salt crusts (left) along the shoreline of Lake Urmia and salt scalds (right) throughout the dry 

lake bed (Sources: Urmulu, 2011; Noroozi, 2014).  

 

Common saline evaporites include but are not limited to gypsum, halite and calcium 

carbonate (Howari, 2002). Reflective quantity diminishes if saline crusts develop cracks 

(Metternicht and Zinch, 2003) or accumulate soil impurities. This is common through wind 

transport of sediments, vegetation or other organic matter and pollutants in continental 

environments (Csillag et al., 1993; Farifteh et al., 2006; Allbed and Kumar, 2013). Salt scalds 
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(Figure 2.1) are formed from the accumulation of saline minerals, forming and impermeable 

surface (McMullen, 2000) 

 

2.3 Multispectral vs. Hyperspectral Imagery  

Detecting and mapping features in saline environments with remotely sensed imagery has 

been successful through the use of both multispectral and hyperspectral imagery (Dwivedi et al., 

1999; Farifteh et al., 2006; Weng et al., 2008; Setia et al., 2011; Dehni and Lounis, 2012; Koshal, 

2012; Teggi et al., 2012; Allbed and Kumar, 2013). Yet the limitations to both image types 

maintain “no agreed-on best approach to this technology for monitoring and mapping soil 

salinity” (Allbed and Kumar, 2013). Researchers are hesitant to use multispectral imagery for 

salinity mapping since low spatial resolution can cause pixel misclassification (Dehaan and 

Taylor, 2003; Allbed and Kumar, 2013). Dehaan and Taylor (2003) also deem “traditional 

classification techniques” to be a limiting factor when using multispectral data.   

Undeterred by its shortcomings, multispectral imagery has been stated in the literature to 

be a “preferred method for mapping and monitoring soil salinity” (Dehaan and Taylor, 2003; 

Allbed and Kumar, 2013). Due to significantly higher resolution and more bands acquired by 

hyperspectral imagery, better quantitative analysis can be performed for saline soil identification 

(Dehaan and Taylor, 2003). However, multispectral data such as that captured by Landsat 

satellites are much more accessible and affordable (free downloads are available from the USGS 

EE) than hyperspectral images.  

Imagery acquired from Landsat TM has been successfully interpreted for soil salinity and 

soil type identification studies, and is the most common type of imagery cited throughout 

numerous publications (Verma et al., 1994; Goossens et al., 1999; Elnaggar and Noller, 2009; 

Kabiri et al., 2012; Allbed and Kumar, 2013). Due to the broad nature of Landsat band sensors, 

Dehaan and Taylor (2003), Farifteh et al. (2006), and Allbed and Kumar (2013) have identified 

potential problems of mixed pixels, poor spatial and spectral resolution as well as limitations 
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during transformations and classifications in their own research. To account for data limitations 

and accuracy, research suggests additional ancillary data inputs such as field data, geographic 

information systems (GIS), and digital elevation models (DEM) with multispectral images (Sah et 

al., 1995; Eklund et al., 1998; Metternick and Zinck, 2003; Allbed and Kumar, 2013).  

 

2.4 Thermal Infrared Band  

Research conducted on remote sensing of soil salinity is two-fold, related to quantitative 

analysis and qualitative characteristics of saline evaporites. Quantitative research on soil salinity 

focuses on band experimentation (Verma et al., 1994; Goossens et al., 1999; Allbed and Kumar, 

2013), spectral (Howari, 2002) and statistical analysis (Fernandez-Buces et al., 2006) of spectrum 

absorption and reflectance. Qualitative analysis of saline soils and salt crusts emphasize texture, 

efflorescence, and soil composition (Csillag et al., 1993; Metternicht and Zinch, 2003; 

Fernandez-Buces et al., 2006).  

Researchers have identified how essential thermal bands and infrared spectra are to 

detecting and mapping soil salinity. Conventional methods of soil detection through multispectral 

image analysis are visualized by graphing soil reflectance (%) against wavelength (µm) (Howari, 

2002). Studies that have used Landsat Thematic Mapper (TM) imagery highlight the advantages 

of including band 6 (thermal infrared) to differentiate between soil types and mineral 

compositions (Verma et al., 1994; Goossens et al., 1999; Allbed and Kumar, 2013). In Goossens 

et al. (1999) and Naseris (1998) studies of saline environments in Iran, the authors’ additions of 

band 6 from Landsat TM imagery into their analysis “improved the separation of saline soils from 

gypsiferous and coarse-textured desert soils”. Similar results were echoed in the analysis of saline 

soils in India, where Verma et al. (1994) combined visible bands (bands 1-3), near infrared (band 

4) and thermal (band 6) of Landsat TM imagery to distinguish between spectrally similar saline 

soils.  
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In the visible and near-infrared portion of the electromagnetic spectrum, saline minerals 

are strongly reflected between 0.4 and 2.5 µm (Crowley, 1991; Schmid et al., 2008; Mulder et al., 

2011). Throughout related literature, there is a general consensus that thermal bands are essential 

in remote sensing applications of saline detection for separating spectrally similar soil types 

(Hunt et al., 1972; Mougenot et al., 1993; Verma et al., 1994; Goossens et al., 1999; Howari, 

2002; Metternicht and Zinch, 2003; Farifteh et al., 2006; Allbed and Kumar, 2013). Farifteh et al. 

(2006) highlight the advantage of analyzing and detecting saline soils during periods of low 

vegetative growth, “for example, at the end of hot and dry season and, or when high percentage of 

bare soil is available”. The electrical conductivity of saline soils, like those including sulphates, 

phosphates, chlorides, carbonates of sodium, calcium, magnesium, gypsum and halite evaporites 

are found to be strongly related to near infrared (NIR), mid-infrared (MIR) and thermal infrared 

(IR) spectra (Siegal and Gillespie, 1980; Metternicht and Zinck, 2003; Shrestha, 2006; 

Metternicht and Zinck, 2010; Mulder et al., 2011). Shrestha’s (2006) study of electrical 

conductivity of soil properties in Thailand utilized Landsat TM bands 1 through 5 and 7, with the 

addition of band 6 for its well-known capabilities to differentiate between spectrally similar saline 

soils (Verma et al., 1994). Overall, soil salinity research stresses the importance of thermal band 

input for soil differentiation, and the electric, chemical and physical characteristics of evaporative 

minerals.  

 

2.5 Tasselled Cap Transformation  

 The Tasselled Cap Transformation (TCT) has been previously used in remote sensing 

studies of saline environments (Peng, 1998; Metternick and Zinck, 2003; Masoud and Koike, 

2006; Elnagger and Noller, 2009). The TCT is generally understood to identify brightness, 

greenness and wetness (or yellowness) of pixels in an image (Kauth and Thomas, 1976). The 

initial purpose of the wetness band was to report soil moisture (Crist and Cicone, 1984); however 

Scott et al. (2003) suggest, “…the wetness component is exploited to differentiate land from 
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water”. Additionally, the brightness band can be used to identify saline soils from their highly 

reflective characteristics (Peng, 1998). Relative to the image classification process, Masoud and 

Koike (2006) found the TCT to enhance the detection and classification of saline features.  
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CHAPTER THREE: Data and Methodology 

3.1 Image Acquisition and Preprocessing 

Landsat images were acquired from the Landsat Archive available through the USGS EE 

webpage (http://earthexplorer.usgs.gov). Table 3.1 outlines their characteristics and provides 

identifiers for each scene. Lake Urmia is located at the intersection of Landsat World Reference 

System 2 (WRS-2) path 169 and row 34. In each image, the lake is situated in the northeast 

corner where, in some cases, sections of the lake were not captured by the satellite. Mosaicking 

multiple images to cover the entire lake was beyond the scope of this project. To account for this 

problem all images were clipped to the same extent, an area of 16,705 km², eliminating any 

discrepancies between years. From Landsat 5 Thematic Mapper (TM) three images were acquired 

for the years 1990, 1998 and 2006. The most recent Landsat image was acquired from the 

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) for the year 2013.  

 

Table 3.1: Characteristics and identifiers of acquired Landsat images from the USGS EE website. 

Satellite Acquisition 

Date 

Landsat Scene ID Resolution Cloud 

Cover 

Landsat 5 

(TM) 
1990/08/19 

06:58:33 

LT51690341990231XXX06 30m 0.00% 

 1998/08/25 

07:17:11 

LT51690341998237AAA01 30m 0.00% 

 2006/09/16 

07:32:24 

LT51690342006259MOR00 30m 0.00% 

Landsat 8 

(OLI/TIRS) 
2013/09/19 

07:40:33 

LC81690342013262LGN00 15m, 30m, 100m 4.97% 
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a)   b)   

b) d)  

Figure 3.1: Natural Colour Landsat images of Lake Urmia; a) 1990, b) 1998, c) 2006, d) 2013 
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Prior to acquisition, the images listed above were preprocessed to Standard Precision and 

Terrain Correction, denoted Level 1T. By doing so, the imagery acquired by the user has already 

undergone topographic correction processes that relate ground control points to digital elevation 

models (DEM). Additional corrections were made to convert the original pixel values from digital 

numbers (DN) to physical reflectance. By correcting images to Top of Atmosphere (TOA) 

reflectance, temporal data comparisons between images will not be affected by differing 

atmospheric conditions at the time of acquisition (PCI, 2010).  An issue that presented itself with 

TOA correction was its removal of thermal infrared bands from the image data. Thermal bands 

cannot be corrected to reflectance measures through TOA correction, however the literature on 

remote sensing of saline environments highly recommends the use of the thermal band in Landsat 

imagery for salt detection (Verma et al., 1994; Goossens et al., 1999; Allbed and Kumar, 2013). 

Therefore the thermal band was transferred back into TOA corrected images for analysis. 

Among the four images selected, three time periods were defined, each representing 

change covering approximately 8 years. The purpose of creating three time frames is to account 

for natural fluctuation in lake surface area up to 1998, as noted by the UNEP (Pengra, 2012). 

Saline features are reported to be most prominent during the dry season in semi-arid climates 

(Farifteh et al., 2006). In Iran, August and September are the driest months of the year, averaging 

less than 3mm of precipitation per month (Figure 1.2). The most recent time frame of 2006 and 

2013 will only represent change in the environment over a 7-year period; due to the fact that 

imagery from August/September 2014 is not yet available.  

 

3.2 Image Classification  

The combination of input bands was selected to highlight three key features during the 

classification process: Water (exclusively Lake Urmia), Vegetation (ideally agricultural land 

identified by its geometric shape), and Saline Features (including saline evaporates, highly saline 
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soils and salt scalds). Table 3.2 displays characteristics of each spectral band, or image 

transformation output used for classification purposes.  

 
Table 3.2: Spectral band and band transformation used for the image classification process. 

Band Band No. L5/L8 Band Information 

Blue 1/2 Effective at identifying differences in bare soil and vegetative 

environments. Best band for water penetration (Quinn, 2001; USGS, 2014) 

NIR 4/5 Useful for differentiating between feature boundaries based on moisture; 

land/water boundaries, dry/wet soils, vegetation/bare land (Quinn, 2001; 

USGS, 2014) 

TIR 6/10 Thermal bands are proven to be essential in remote sensing of soil salinity 

for their electromagnetic responsiveness (Verma et al., 1994; Goossens et 

al., 1999; Allbed and Kumar, 2013) 

TCB Tasselled Cap 

Brightness 

Captures highly reflective features such as bare soil, urban or man-made 

environments (ArcGIS Help, 2014) 

TCW Tasselled Cap 

Wetness 

Highlights moisture within the image. Degrees of soil moisture and water 

features (ArcGIS Help, 2014) 

 

Unsupervised classification method was selected over supervised classification for two 

key reasons. Supervised classifications require the user to identify features by manually creating 

training areas. Without additional reference data or imagery, it can be difficult to justify the 

creation of training areas representing each feature classification. The overall unfamiliarity of the 

environment and lack of additional reference data supported the decision to implement the 

unsupervised classification method. Selecting the optimum classification algorithm was an 

experimental process. There are three classification algorithms in the PCI Geomatica software to 

select when conducting an unsupervised image classification: K-Means, Fuzzy K-Means, and 

ISODATA. The K-means algorithm was immediately dismissed as an option for classifying 

imagery of Lake Urmia. This is due to the fact that the Fuzzy K-Means and ISODATA 

algorithms provide better classification of mixed pixels when they are run according to iteration 

parameters set by the user (Yale, 2001; Chang et al., 2011). Fuzzy K-Means is described as a 

softer approach to k-means clustering where pixels can be classified by a “degree of 

belongingness” to cluster centres (Chang et al., 2011). This method requires the user to determine 

a fixed number of total classes before the classification is run. The Iterative Self-Organizing Data 
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Analysis Technique (ISODATA) does not require the user to determine a fixed number of classes 

yet maintains the fuzzy characteristics of the Fuzzy K-means algorithm. Instead, ISODATA 

simply requires the user to conceive parameters such as the maximum and ideal number of 

classes, and then the algorithm itself determines the actual number of classes. The ISODATA 

algorithm requires the user to trust the iterative process when classifying pixels. At the same time, 

it limits parameter experimentation required in both k-means and fuzzy k-means when 

determining the minimum and maximum number of classes to be created (Memarsadeghi et al., 

2007). For the unsupervised classification of all four Lake Urmia images, the algorithm 

parameters were set as follows: Minimum Clusters – 2, Maximum Clusters – 50, Desired Clusters 

– 30, Maximum Iterations – 25, and the remaining parameters were left at their default values. 

Cluster limits were set after conducting an ISODATA classification with default parameters then, 

experimenting with various combinations of clusters until meaningful groupings were 

maximized. The result of the unsupervised classification by ISODATA algorithm produced 40 

classes for each image. 

 

3.3 Post Classification Analysis  

An accuracy assessment was conducted upon completion of the class aggregation 

process. This assessment overlays 300 random points onto each classified image (Forsythe and 

McCartney, 2014), then prompts the user to reclassify each random point from a reference image. 

The rule of thumb when creating random sampling points is to use 50 points per feature class 

(Congalton, 1991). The number of random sampling points were increased to 300 for 4 feature 

classes to account for the feature size within the image, and the chance that a random sampling 

point will not actually represent a narrow or scattered feature.  

 The output of an accuracy assessment is an Error (Confusion) Matrix as well as an 

Accuracy Report. The diagonal of the Error Matrix represents the random points that were 

correctly identified by the reference image as the same class in the classified image. Pixel values 
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listed outside of the diagonal report misclassified pixels between the reference and classified 

images. The accuracy statistics report breaks down class accuracy by Producers Accuracy and 

User Accuracy. Producer’s Accuracy represents errors of omission within the data meaning the 

percent of pixels accurately classified in the reference image (Congalton, 1991). Errors of 

omission represent the percent of pixels that failed to be classified into its appropriate 

classification (Congalton, 1991). This statistic represents the ability to accurately classify pixels 

from the reference data. User Accuracy represents the reliability of the classified data to actually 

represent the same feature class in real life. Kappa statistics are calculated as a measure of 

agreement between the producer and user accuracies, otherwise described as “the agreement 

between model predictions and reality” (Lentilucci, 2006). This statistic depicts the likelihood of 

pixels being classified correctly by chance. The remote sensing community advocates that when k 

= > 0.8 it is unlikely that classification was due to chance. When k = < 0.4 it is understood that 

there is a greater disagreement between a pixels representation and predicted class, therefore 

more likely classified due to chance (Lentilucci, 2006).  Therefore Kappa statistics greater than 

80% will be interpreted as an accurate classification of pixels into the three feature classes of 

Water, Saline Features and Vegetation.   

 

3.4 Image Band Differencing 

Band differencing is the process wherein temporal change between two images at the 

same location is calculated by subtracting the same bands in each image from each other. 

Essentially this calculation creates an output image depicting “change” and “no change” in the 

environment from a single band. To detect feature change over time at Lake Urmia, a band 

differencing image was created by subtracting NIR bands of the older image from the newer 

image for each time period. The near-infrared band was selected for its ability to differentiate 

between feature boundaries (Quinn, 2001) as listed above in Table 3.2. The values created 

through band differencing represent no change, positive or negative change in reflectance of the 
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NIR band from 1990 to 1998, 1998 to 2006, and 2006 to 2013. Positive values represent pixels 

that have increased in reflectance over time, whereas negative values represent the opposite, 

where pixels have decreased in reflectance over time. Pixels assigned a value of 0 have not 

experienced any change. That being said, a value of 0 may not be the best representation of “no 

change” pixels. By applying a threshold to what are considered “no change” pixels, those which 

show extreme positive or negative change will be better visualized. Each output image was 

manually classified into 6 classes where classification breaks represent one half standard 

deviation (SD) from the mean. The thresholds created around the mean extended “no change 

pixels” to slightly more than 0, encompassing more instances of limited change over time, 

highlighting greater change further from each mean.  

 

3.5 Image reclassification  

Classes in both the aggregation and band differencing images were reclassified in order 

to create a meaningful change detection legend. Table 3.3 outlines how classes were numerically 

reclassified, and then explains the output values from raster calculation in the final change 

detection images.  

 

Table 3.3: Image reclassification values, raster calculation output values and their meanings 

Band Differencing Image 

Number = Class 

Aggregate Image  

Number = Class 

Calculation Output 

(Raster addition) 

Output Interpretation 

100 = No Change 1 = Water 101 No Change, Water 

200 = Negative Change 2 = Other 102 No Change, Other 

300 = Positive Change  3 = Vegetation  103 No Change, Vegetation 

 4 = Saline Features 104 No Change, Saline Features 

  201 Growth of Water 

  202 Loss of Other 

  203 Loss of Vegetation 

  204 Loss of Saline Features 

  301 Loss of Water 

  302 Growth of Other 

  303 Growth of Vegetation 

  304 Growth of Saline Features 
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Again, “no change” pixel classification contains pixels with little to no change in 

reflectance within a half standard deviation from the mean. “Positive change” identifies pixel 

clusters that have increased (“growth”) in reflectiveness over time, whereas “negative change” 

represents clusters of pixels that have decreased (“loss”) in reflectiveness over time. From here, 

visual interpretation of the change detection classes will prompt a spatial analysis of feature class 

changes over time. 
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CHAPTER FOUR: Results and Analysis  

4.1 Results 

The unsupervised classification output presented 40 clusters from the ISODATA 

parameters for each of the four years. The average number of clusters aggregated to represent 

classified feature categories are as follows; Water – 5, Vegetation – 2.75, Saline Features – 9.25, 

and Other - 23. Figures 4.1, 4.2, 4.3 and 4.4 display the aggregated feature classifications for 

1990, 1998, 2006 and 2013 respectively. The number of pixel clusters created to represent 

vegetation was the most consistent over time. Between 2006 and 2013 the number of pixel 

clusters identifying water doubled from 4 to 8. In contrast, the number of pixel clusters 

highlighting salinity decreased by approximately half between 2006 and 2013 from 12 to 7. Pixel 

representation became more homogeneous for Saline Features between 2006 and 2013, requiring 

fewer clusters. As the lake continues to decrease in water volume, the bathymetry of the lake 

itself creates sections of varying depths of water throughout the lake. Thus more clusters are 

created to represent the various depths of water as the identification of pixels representing Lake 

Urmia becomes more complex.  

From the classification images alone, logical inferences can be made about the changing 

environment from 1990 to 1998 (Figure 4.1). As was previously identified in the literature 

review, severe water loss began in 1998 (Figure 4.2) continuously declining to 2013 (Figure 4.4). 

At the same time, aggregate classes representing Saline Features appear to increase in the 2006 

(Figure 4.3) and 2013 classified images. The Other and Saline Features classifications should 

increase where evaporated water has exposed the lakebed and left behind evaporated salt. .  
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Figure 4.1: Landsat 5, 1990 aggregate feature classification where blue – Water, red – Saline Features, 

green – Vegetation and white – Other.   
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Figure 4.2: Landsat 5, 1998 aggregate feature classification where blue – Water, red – Saline Features, 

green – Vegetation, white – Other. 
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Figure 4.3: Landsat 5, 2006 aggregate feature classification where blue – Water, red – Saline Features 

green – Vegetation, and white – Other. 
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Figure 4.4: Landsat 8, 2013 aggregate feature classification where blue – Water, red – Saline Features, 

green – Vegetation and white – Other. 
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4.2 Accuracy Assessment  

Accuracy assessments conducted on all images received over 90% accuracy (Figure 4.5). 

Kappa coefficients also all exceed the threshold of k > 0.8 (as defined by Lentilucci, 2006) 

meaning that the image classifications all have a high degree of validity. Accuracy statistics from 

each year do however highlight errors of omission and commission amongst pixels through the 

Producer and User Accuracy.  

 
 

Figure 4.5: Overall accuracy (%) and Kappa Statistics (k) of 1990, 1998, 2006 and 2013 Landsat images.  

 

 

Producer and User Accuracy statistics for each feature class is listed in Table 4.1 for the 

year 1990. The error matrix (Table 4.5) displays that 66 water pixels were correctly classified as 

Water, resulting in a User Accuracy of 100%. A single pixel from the Other classification was 

incorrectly classified as Water, resulting in a Producers Accuracy of 98.51%. Next, 215 Other 

pixels were correctly classified resulting in the Users Accuracy of 99.54%. A classification error 

in this category occurred where 3 Vegetation pixels were incorrectly classified as other pixels 

resulting in a Producers Accuracy of 98.62%. Both Producer and User Accuracies of Saline 

Features were classified without error. This is partly due to Saline Features being the smallest 

classified feature in the image and as such, this feature received very few random sampling points 
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during the accuracy assessment. Vegetation pixels were the most misclassified pixels of the 1990 

image with a User’s Accuracy of 80% and a moderate Kappa coefficient of 0.79. For 1990 

(Figure 4.1), the classification accuracy of Vegetation pixels was the least reliable of all features.  

 
Table 4.1: Accuracy statistics report (of 300 random sampling points) for Landsat 5 (1990) image 

aggregation from unsupervised ISODATA classification.  

 

Class Name Producer’s 

Accuracy 

95% Confidence 

Interval 

User’s 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Water 98.507% (94.858% 102.157%) 100.00% (99.242% 100.758%) 1.0000 

Other 98.624% (96.848% 100.400%) 99.537% (98.400% 100.674%) 0.9831 

Vegetation 100.000% (95.833% 104.167%) 80.000% (56.424% 103.576%) 0.7917 

Saline 

Features 

100.000% (83.333% 116.667%) 100.000% (83.333% 116.667%) 1.0000 

Overall Accuracy: 98.667%  95% Confidence Interval (97.202% 

100.131%) 

Overall Kappa Statistic: 0.969 Overall Kappa Variance: 0.000 

 

Table 4.2: Error (Confusion) Matrix accuracy report (of 300 random sampling points) for Landsat 5 (1990) 

image aggregation from unsupervised ISODATA classification. 

 

Classified Data Reference Data  

 Water Other Vegetation Saline Features Totals 

Water 66 0 0 0 66 

Other 1 215 0 0 216 

Vegetation 0 3 12 0 15 

Saline Features 0 0 0 3 3 

Totals 67 218 12 3 300 

 

As displayed in Table 4.3, both the overall accuracy and Kappa statistics increased in the 

1998 image (Figure 4.2) classification to 99.33% and 0.985 respectively. Problems of pixel 

classification accuracy significantly decreased in the 1998 image by only showing conflict 

between the Water and Other feature classes. Of 71 Water classified pixels in the image, 69 

pixels were correctly classified resulting in a user accuracy of 97.18%. The other 2 pixels were 

mistakenly classified into the Other feature classification resulting in a producer’s accuracy of 

99.07 in the other feature class. The remaining pixels were classified 100% accurate against the 

reference image and do not display any risk for being classified by chance (as displayed in Table 
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4.4). Similar instances of error have occurred amongst the Water and Other feature classifications 

between 1990 and 1998. This can be identified from both the classified image, where the majority 

of the Water class borders onto Other features classification; as well in the reference image where 

the shoreline pixels are visibly the most complex pixels in the image for differentiating between 

two classifications.   

 

Table 4.3: Accuracy statistics report (of 300 random sampling points) for Landsat 5 (1998) image 

aggregation from unsupervised ISODATA classification. 

 

Class Name Producer’s 

Accuracy 

95% Confidence 

Interval 

User’s 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Water 100.000% (99.275% 100.725%) 97.183% (92.630% 101.736%) 0.9634 

Other 99.065% (97.543% 100.588%) 100.000% (99.764% 100.236%) 1.0000 

Vegetation 100.000% (96.875% 103.125%) 100.000% (96.875% 103.125%) 1.0000 

Saline 

Features 

100.000% (50.000% 150.000%) 100.000% (50.000% 150.000%) 1.0000 

Overall Accuracy: 99.333% 95% Confidence Interval (98.246% 

100.421%) 

Overall Kappa Statistic: 0.985 Overall Kappa Variance: 0.000 

 
Table 4.4: Error (Confusion) Matrix accuracy report (of 300 random sampling points) for Landsat 5 (1998) 

image aggregation from unsupervised ISODATA classification. 

 

Classified Data Reference Data  

 Water Other Vegetation Saline Features Totals 

Water 69 2 0 0 71 

Other 0 212 0 0 212 

Vegetation 0 0 16 0 16 

Saline Features 0 0 0 1 1 

Totals 69 214 16 1 300 

 

Table 4.5 shows the overall accuracy and Kappa statistics from the 2006 accuracy 

assessment begin to decline from 1998. The movement of accuracy statistics displayed in Figure 

4.5 mirrors the decline of the lakes size itself. This may inform both the producer and the user of 

these image classifications that as the environment in question becomes increasingly complicated. 
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This can be attributed to environmental degradation where pixel classification can become 

increasing exposed to instances of omission and commission errors. 

In the 2006 image classification (Figure 4.3) all but 1 Water pixel (Table 4.6) was 

omitted from the dataset and committed to another, resulting in both a producer and user accuracy 

of 98.077%. The same degree of error occurred when classifying Other pixels, resulting in user 

and producers accuracies of 99.558%. Of the images used in this analysis, 2006 is the first year 

where the Kappa coefficient of Saline Features classification has decreased from k = 1, yet at 

0.83, it still maintains that pixel classification was unlikely due to chance (Lentilucci, 2006).   

 

Table 4.5: Accuracy statistics report (of 300 random sampling points) for Landsat 5 (2006) image 

aggregation from unsupervised ISODATA classification. 

 

Class Name Producer’s 

Accuracy 

95% Confidence 

Interval 

User’s 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Water 98.077% (93.383% 102.771%) 98.077% (93.383% 102.771%) 0.9767 

Other 99.558% (98.471% 100.644%) 99.558% (98.471% 100.644%) 0.9821 

Vegetation 100.000% (96.875% 103.125%) 100.000% (96.875% 103.125%) 1.0000 

Saline Features 83.333% (45.180% 121.487%) 83.333% (45.180% 121.487%) 0.8299 

Overall Accuracy: 99.000%  95% Confidence Interval (97.707% 

100.293%) 

Overall Kappa Statistic: 0.975 Overall Kappa Variance: 0.000 

 
 

Table 4.6: Error (Confusion) Matrix accuracy report (of 300 random sampling points) for Landsat 5 (2006) 

image aggregation from unsupervised ISODATA classification. 

 

Classified Data Reference Data  

 Water Other Vegetation Saline Features Totals 

Water 51 1 0 0 52 

Other 0 225 0 1 226 

Vegetation 0 0 16 0 16 

Saline Features 1 0 0 5 6 

Totals 52 226 16 6 300 
 

The 2013 image classification (Figure 4.4) had the lowest accuracy statistics for the 

period of analysis. Overall accuracy of the image was reduced to 97% with a Kappa statistic of 
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0.914 (Table 4.7). The Other feature class showed the most instances of incorrectly classified 

pixels (Table 4.8). As well, the Saline Features class had the most errors against the reference 

image where only 71.4% of classified Saline Features pixels represent saline features in reality. 

The Kappa statistics for Saline Features pixel classification was reduced further from 2006 to k = 

0.7, which shows increasing probabilities of pixels being classified as salinity merely by chance.   

 

Table 4.7: Accuracy statistics report (of 300 random sampling points) for Landsat 8 (2013) image 

aggregation from unsupervised ISODATA classification. 

 

Class Name Producer’s 

Accuracy 

95% Confidence 

Interval 

User’s 

Accuracy 

95% Confidence 

Interval 

Kappa 

Statistic 

Water 96.154% (86.839% 105.469%) 96.154% (86.839% 105.469%) 0.9579 

Other 97.107% (94.789% 99.426%) 99.576% (98.536% 100.617%) 0.9781 

Vegetation 95.455% (84.478% 106.432%) 87.500% (72.185% 102.815%) 0.8651 

Saline 

Features 

100.000% (95.000% 105.000%) 71.429% (44.193% 98.664%) 0.7044 

Overall Accuracy: 97.000%  95% Confidence Interval (94.903% 99.097%) 

Overall Kappa Statistic: 0.914 Overall Kappa Variance: 0.001 

 

Table 4.8: Error (Confusion) Matrix accuracy report (of 300 random sampling points) for Landsat 8 (2013) 

image aggregation from unsupervised ISODATA classification. 

 

Classified Data Reference Data  

 Water Other Vegetation Saline Features Totals 

Water 25 1 0 0 26 

Other 1 235 0 0 236 

Vegetation 0 3 21 0 24 

Saline Features 0 3 1 10 14 

Totals 26 242 22 10 300 

 

In general, the overall accuracy statistics from 1990, 1998, 2006 and 2013 image 

classifications are acceptable. It is important to note however, that overall accuracies are not 

capable of giving insight into individual classification errors. By analyzing individual feature 

class changes, one can explain changes in overall accuracy. For instance, the Saline Features 

classification becomes more unreliable as a realistic measure of pixel representation from 1990 to 

2013. As well, when visually assessing change over time from the image classification output 



 30 

maps themselves, errors of omission and commission highlight faults of the producers, and faults 

within the classification process. To use the Saline Features pixel classifications as another 

example, the trend of its accuracy statistics over time speaks to the unpredictable and random 

nature of salinity and saline features, especially loose evaporites. In contrast, water bodies as a 

main image feature will generally be less difficult to accurately classify as Water based on its 

size, consistency over space, and unmistakable absorption characteristics. Relative to the 

accuracy assessment process, large water bodies such as Lake Urmia can be unmistakable when 

classifying a random sampling point against the reference image. Shorelines can create 

classification discrepancies in the random sampling process when image resolution and lack of 

additional data hinder classification accuracy of complex shorelines.   

 

4.3 Band Differencing   

As stated earlier in the methods section, the NIR band was selected for the band 

differencing analysis for its strengths in differentiating between land type boundaries. A value of 

0 in a band differencing image represents no change in reflectance values of a pixel between two 

time periods (Cho and Ntoulas, 2002). Thresholds of standard deviation were applied to better 

identify greater extremes of change, while also grouping together pixels showing limited change 

(above or below 0). Descriptive statistics from each band differencing image are listed in Table 

4.9 to show how values in output images were classified and interpreted for degrees of change.   

 

Table 4.9: Descriptive statistics of NIR band differencing image values.  

 

Image Statistics  1990-1998 1998-2006 2006-2013* 

Minimum  -173 -185 6169 

Maximum 182 177 38339 

Mean -32 12 18996 

Standard Deviation 82 95 7322 

½ Standard Deviation 41 ~48 3661 
*2006-2013 band differencing image conducted on non-TOA corrected NIR band due to software limitations  
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All images were classified with one half standard deviation thresholds, snapped to their 

minimum and maximum values when required. The first time period was analyzed using the near 

infrared band by subtracting the NIR band 4 in the 1990 image from the 1998 image using raster 

calculator in ArcGIS (Figure 4.6). Values between -31.99 and 9 were identified as the threshold 

of no change between 1990 and 1998. Change values in the 1998 to 2006 image (Figure 4.7) were 

identified by one half standard deviations from the mean, just as for the 1990 to 1998 image. The 

values ranging from -35.99 to 12 represent the threshold of no change pixels between 2006 and 

1998. Lastly, the band differencing image from 2006 to 2013 (Figure 4.8) poses its own 

challenge. Being limited to PCI Geomatica 2013 (which does not include algorithm options for 

Landsat 8 imagery), the NIR bands from 2006 and 2013 used for this band differencing analysis 

were not TOA corrected (Table 4.9). Therefore the output values from the raster calculation 

represent DN values instead of reflectance values. However, it was still possible to classify the 

change values by one half standard deviation to identify the threshold for no change. In this case, 

all values below the mean were labelled as pixels representing no change in the band differencing 

output image between 2006 and 2013.  

Between 1990 and 1998 Lake Urmia increased in size, most noticeably along the 

northeast shoreline. There was also an increase in Saline Features during this period.. From 1998 

to 2006 there is a significant amount of water loss in the image, most noticeably at the northeast 

and southeast extents of the lake. Increasing reflectiveness in pixels corresponds to evaporation of 

highly absorptive Water pixels, and newly exposed salt-laden lakebed. Pixels representing feature 

loss are scattered throughout the surrounding environment that may be indicative of drought 

impacts on vegetation. Lastly, there are no instances of decreased pixel reflectance in the output 

image from 2006 and 2013.  
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Figure 4.6: NIR band differencing image 1990 and 1998. Where white – positive (high) change, black – 

negative (low) change, grey – no change.  
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Figure 4.7: NIR band differencing image 1998 and 2006. Where white – positive (high) change, black – 

negative (low) change, grey – no change.  
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Figure 4.8: NIR band differencing image 2006 and 2013. Where white – positive (high) change, black – 

negative (low) change, grey – no change.  
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4.4 Change Detection, 1990 and 1998  

Natural fluctuations of water levels at Lake Urmia were reported by Pengra (2012), 

Zarrineh and Azari Najaf Abad (2014) up until 1998. The causeway was in early stages of 

construction during this point in the analysis (Khalyani et al., 2014), and did not appear to have 

any impact on the lake between 1990 and 1998.  

Class 201 – “Growth of Water” shows the increasing lake size in Figure 4.9. Pixels 

identifying water appear clustered as a homogenous feature class. Pixels labelled as 304 – 

“Growth of Saline Features” outlines the increased presence of salinity between the two years. 

Pixels identifying salinity display the scattered characteristics of salinization. Additionally, the 

Saline Features identified in Figure 4.9 should represent relatively recent processes of 

salinization based on their reflectiveness. As Csillag et al. (1993), Farifteh et al. (2006) and 

Allbed and Kumar (2013) identified in soil salinity studies, reflectiveness of salt diminishes as 

evaporites become mixed with other soils and pollutants. A scattering of pixels labelled as 303 – 

“Growth of Vegetation” highlight increased reflectance of vegetation pixels. An increase in 

reflectiveness of vegetation pixels in the NIR band can be interpreted as growth of healthy crops 

between 1990 and 1998. Vegetative growth and increased lake size mirror the lessened rate of 

evaporation at Lake Urmia between 1990 and 1998 (Faramarzi, 2012).  

 

4.5 Change Detection, 1998 and 2006  

 During this time, the pipeline to Tabriz had opened and construction on the causeway 

was nearing completion (Khalyani et al., 2014). By 2006, approximately 21 billion m³ of water 

would have been extracted from the Lake Urmia watershed, accounting for approximately 7.6 

km² of surface water loss during this time. As the lake size decreased between 1998 and 2006, the 

contrasting lakebed emerged in its place, as identified by the yellow pixels (302 – “Growth of 

Other”) surrounding the entire lake (Figure 4.10). 
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Figure 4.9: 1990 and 1998 Landsat 5 NIR band differencing image. Change detection atop background 

imagery of 1990 NIR band. Blue – Growth of Water, red – Growth of Saline Features and green – Growth 

of Vegetation. 
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Figure 4.10: 1998 and 2006 Landsat 5 NIR band differencing image. Change detection atop background 

imagery of 1990 NIR band. Red – Growth of Saline Features, green – Growth of Vegetation, and yellow –

Growth of Other.  
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Additional growth of saline features (304 – “Growth of Saline Features”) is noticeable along the 

lakes shoreline, around mountains and along the causeway. Khalyani et al. (2014), Zarrineh and 

Azari Najaf Abad (2014) both suggest the demise of Lake Urmia was caused by the pipeline and 

causeway. The solid bridge structure began to influence the location of water loss and salinization 

between 1998 and 2006 as seen at the west entrance of the causeway.  

 

4.6 Change Detection, 2006 and 2013 

 

To accentuate temporal feature change from 2006 to 2013, the change detection output 

classes were overlaid atop the NIR band from 1990. The extent of Lake Urmia in 1990 (black) is 

contrasted with the extent of the lake in 2013 (class 101 – “No Change, Water”). Feature change 

became more complex throughout the lake, reflecting severe water loss and salinization. Where 

saline features are no longer identified in previous images, it is likely that the saline evaporite 

particles have been blown elsewhere by frequent windstorms throughout the region (Grotzinger et 

al., 2007). As mentioned previously, there are varying depths of water throughout the remainder 

of the lake, which was not the case in previous images. Class 301, interpreted as “Loss of Water” 

identifies pixels representing water that have become more reflective over time. By referring to 

the 2013 natural colour image, it was determined that this classification was detecting areas 

within the lake that have become shallower.  The southern portion of the lake is significantly less 

saline than the north, allowing for faster rates of evaporation than highly saline water (Karbassi et 

al., 2010). Future predictions of water volume loss in the lake can be made from the unequal lake 

depths and saline concentrations.   

If the pipeline continued to extract water from the watershed at the rate of 3 billion m³ per 

year (Khalyani et al., 2014), by 2013 42 billion m³ of water could have been withdrawn since 

1999, accounting for approximately 12 km² of surface water loss during this time. Additionally, 

the completion of the causeway in 2008 appears to exacerbate the process of salinization along 

the length of the bridge (highlighted by class 304 – “Growth of Saline Features”). The lakebed 
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will be continuously exposed (represented as 302 – “Growth of Other”) as the surface water 

continues to shrink in size. Reflectiveness of vegetation appears to be present and growing up to 

2013, which can be linked to increasing resource demands and resource extraction from Lake 

Urmia.  

Logical inferences about feature changes between 1990 and 2013 can be made from Figure 

4.11. Pixels representing water have likely changed to represent saline features and the exposed 

lakebed. Some saline features have remained at the same location over this analysis. However, it 

can be predicted that due to the transitory nature of saline evaporites, the location of Saline 

Features in 2013 will change in years to come. 

 

4.7 Overall Lake Change  

The maximum (1998) and minimum (2013) extents of Lake Urmia during this analysis are 

visualized in Figure 4.12. From the classified images, the lake surface area measured 4995 km² in 

1998 and 1849 km² in 2013. During this time period, three events contributed to the diminishing 

size of the lake: construction of the Tabriz pipeline in 1999 (Khalyani et al., 2014), completion of 

the Urmia causeway in 2008 (Kabiri et al., 2012) and excessively dry climatic conditions (World 

Bank, 2014). Zeinoddini et al. (2014) reported the yearly rate of evaporation at Lake Urmia to be 

1020mm/year (85mm/month). In contrast to the yearly average precipitation of 264 mm/year 

(22mm/month) recorded by the World Bank (2014), it is clear that this region is suffering from a 

water deficit.  
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Figure 4.11: 2006 Landsat 5 and 2013 Landsat 8 NIR band differencing image. Change atop background 

imagery of 1990 NIR band (black outlines the lake extent in 1990). Light blue – No Change Water, blue – 

Loss of Water, red – Growth of Saline Features, green – Growth of Vegetation and yellow – Growth of 

Other.  
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Figure 4.12: Change in lake size. From maximum extent of 4995 km² (1998 – dark blue) to minimum 

extent of 1849 km² (2013 – light blue) during the period of analysis.  
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CHAPTER FIVE: Conclusion  

The classification framework and change detection analysis in this study provided two 

conclusions. Firstly, this remote sensing based study of salinization at Lake Urmia successfully 

produced visual representations of feature changes between 1990, 1998, 2006 and 2013.  

Multispectral imagery was successful in conducting a land cover change detection 

analysis. The data fit the scope of the study and were easily accessible. However, higher spatial 

resolution in some bands of the Landsat 8 image made for easier feature delineation and 

identification than the Landsat 5 imagery. Confidence in the classification methods is attributed to 

consistently high (>90%) overall accuracy statistics derived from the post-classification analysis.  

Secondly, the change detection analysis of land cover from 1990 to 2013 highlights the 

growth of salinized land aggressively overtaking Lake Urmia and its immediate environment. The 

dry region has most certainly become drier since 1998 from both climatic and anthropogenic 

stresses. This can be seen in the change detection maps where “Growth of Other” (302 – yellow) 

and “Growth of Saline Features” (304 – red) classes are the most prominent in 2013. Together 

these classes highlight the expanding drought-like conditions throughout the environment.  

Water resource extraction for market crop agriculture and urban development is not a 

suitable long-term strategy for economic prosperity. Water-intensive practices were not meant to 

be sustainable in arid climates, meaning Lake Urmia has always been vulnerable to changes in its 

water cycle. Looking to the future, Iranians must be willing to adapt to a life without Lake Urmia, 

or begin to make every attempt to nurse the lake back to a healthy state. 

 

5.1 Limitations 

As the environment so drastically changed between years of analysis, 30m resolution 

imagery should be accompanied with additional data to better illustrate complex boundaries and 

features. Google usually provides a wealth of open source geospatial data, yet neither Google 
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Earth nor Google Street View has mapped Iran in its usual fashion (for privacy and political 

concerns). It was nearly impossible to acquire any additional imagery, photographs or data.  

 

5.2 Contribution to Research and Implications  

 The best band combinations for identifying Lake Urmia and salinization included the 

blue, near infrared, thermal infrared and Tasselled Cap Transformation brightness and wetness 

bands. As the literature suggests (Verma et al., 1994; Goossens et al., 1999; Howari, 2002; 

Allbed and Kumar, 2013) the use of the thermal infrared band enhanced identification of Saline 

Features. In addition, the brightness and wetness bands of the TCT accentuated salinity, and 

land-water boundaries. It was therefore beneficial to the image classification process and output 

to call attention to boundary differentiation of land cover types and their measures of brightness. 

The NIR, TIR and TCT bands were recommended in numerous remote sensing based studies of 

salinization (Verma et al., 1994; Peng, 1998; Metternick and Zinck, 2003; Masoud and Koike, 

2006; Elnagger and Noller, 2009). In combination, these bands proved to successfully identify 

saline features from multispectral images.  

 Public demonstrations for the protection and revitalization of Lake Urmia would benefit 

from the output maps of this change detection analysis. Used as visual evidence of water loss and 

salinization, the general public would be equipped with factual representations of recent 

environmental changes.  

  

5.3 Future Research  

This study focused its efforts to identifying water loss and the salinization of land cover 

with minimal inferences to effects of salinity on vegetation (secondary indicators). By continuing 

to identify and monitor land cover change over time, studies driven by vegetation analysis would 

add another dimension to salinity-based studies of Lake Urmia and its region.   
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