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Abstract 

 

 Research activities involving the collection of sediment core samples are 

extremely time consuming and expensive to fund. This research utilized data from the 

Environment Canada Great Lakes Sediment Assessment Program. A total of 32 

contaminants were measured at 70 sediment core-sampling locations in Lake Ontario. 

Various methods for the estimation of sediment contamination levels were investigated. 

The Sediment Quality Index (SQI) was calculated and assessed as being a satisfactory 

measure for areas where sediment quality is frequently threatened or impaired. 

   

Ordinary kriging was identified as the optimal spatial interpolation model. Individual 

prediction maps were successfully produced for 20 of the contaminants and cross-

validation was used to further assess 'ordinary kriging' as an appropriate method for 

predicting the spatial distribution of sediment contamination. The results rendered 

from cross-validation provided an assessment of the relative success of each of the 

interpolation procedures. Limitations including the limited number of sampling sites, and 

minimal data at Lake Ontario Areas of Concern, were the main factors for inaccurate 

prediction surfaces. 
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Chapter 1: Introduction 

1.1 Introduction 

 

 Over the past century, Lake Ontario has experienced contamination of sediment, 

water, and biota as a result of anthropogenic activities, including mass development along 

the Canadian portion of its western shoreline known as the Golden Horseshoe (Figure 

1.1). 

 
Figure 1.1 – The Golden Horseshoe 

(Source: Mapquest, 2002) 

 

 The Golden Horseshoe includes the major cities of Toronto, Mississauga, Oakville, 

Hamilton, St. Catherines, Niagara Falls, Burlington, and Oshawa. Half the population of 

Ontario lives in or around these cities (ASG, 2002). With a general objective to “restore 

the overall health of the Great Lakes ecosystem” (LOLMP, 1998), Canadian and 

American government institutions combined resources in the development of a Lakewide 

Management Plan. As a result of these actions, toxic contamination in the Lake Ontario 

basin has decreased, however, contaminants remain in the ecosystem with the capacity to 
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bioaccumulate (accumulate in aquatic organisms to levels that are harmful to human 

health) (LOLMP, 1998). It is due to the persistence of these toxic contaminants that 

research regarding the sediment and water quality in the Great Lakes continues. 

 

1.2 Pollution in the Great Lakes 

 

The Great Lakes Basin (Figure 1.2) consists of approximately 23,000 km3 of fresh 

water, representing 18 % of the world’s supply (GLA, 1995). 

 
Figure 1.2 – The Great Lakes Basin 

(Source: U.S. Army Corps of Engineers, Detroit District in GLIN, 2002) 

 

Toxic pollutants can be found in the aquatic system due to the re-suspension of sediment, 

cycling through biological food chains, and continuing pollution-causing processes. 

These pollutants are human-made organic chemicals and heavy metals that can be toxic 
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in small amounts and cause negative effects in minute concentrations over a long period 

of time. The first Europeans to settle in this region in the 1600’s limited their exploitation 

of the natural resources to wildlife in the system. However, the arrival of new immigrant 

groups caused ecological changes through processes including logging, farming, and 

commercial fishing. 

 

 After the turn of the 20th century, growing urbanization and industrial 

development in the Great Lakes Basin caused widespread bacterial contamination and 

added to the floating debris produced by activities such as logging and agriculture. 

Continued industrialization and intensified agricultural practices were the causes for the 

development of new chemical substances. Polychlorinated Biphenyls (PCBs) and 

Dichloro-Diphenyl-Trichloroethane (DDT) were developed for use as pesticides in 

agricultural activity in the 1920s and 1940s respectively (Hodgson and Levi, 1997). 

Toxic runoff produced by these pesticides, the use of synthetic fertilizers developed to 

further enhance crop yield, existing sources of nutrient rich pollutants (untreated human 

waste from urban areas), and phosphate detergents accelerated the rate of biological 

production in the system (GLA, 1995). Eutrophic-imbalance was first documented in 

Lake Erie in the 1950’s. The imbalance was characterized by a depletion of dissolved 

oxygen and the formation of massive algal blooms in this body of water (GLA, 1995). By 

1980, the International Joint Commission (IJC) estimated that approximately 2500 

chemicals were in common use in the Great Lakes Basin.  
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 The major industries located in the Great Lakes region include steel production, 

pulp and paper, chemicals, automobiles, and manufactured goods. The most significant 

urban areas were developed at the mouths of Great Lakes tributaries due to transportation 

needs and freshwater resources for domestic and industrial use (GLA, 1995). Lake Erie 

features the smallest water volume of the Great Lakes and it is significantly affected by 

urbanization and agricultural practices in its surrounding area. Agricultural lands in the 

Lake Erie basin are extremely fertile. As a result, contaminants enter the lake as runoff 

from intensive farming practices in southwestern Ontario, Ohio, Indiana, and Michigan. 

Furthermore, 17 metropolitan areas featuring populations greater than 50000 surround 

Lake Erie and act as sources of contamination to the system (LEWQ, 1989). Lake 

Ontario is similarly affected by urbanization and agricultural practices, although, 

industrialization is also a main pollution factor. As early as 1870, water could not be 

drawn from Hamilton Harbour or local wells due to high contamination levels in this area 

(GLA, 1995). 

 

Lake Michigan is the second largest of the Great Lakes and is located entirely 

within the United States. The population is sparse in its northern basin, however this area 

receives wastes from the world’s largest concentration of pulp and paper mills. 

Furthermore, the southern basin consists of U.S. metropolitan areas including Milwaukee 

and Chicago. Combined, these cities account for 20% of the human population in the 

Great Lakes Basin (GLA, 1995). Lakes Huron and Superior are the least contaminated 

entities in the Great Lakes system. The Saginaw River basin is the largest contributor of 

contamination in Lake Huron resulting from agricultural practices. The Lake Superior 
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basin features a cool climate with poor soils. These factors coupled with its northern 

location make it the cleanest of the Great Lakes. The main source for contamination is 

atmospheric deposition. 

 

1.3 Study Area  

 

Lake Ontario is located in the southeastern part of the Great Lakes Basin. It has an 

area of approximately of 19010 square kilometres, and is the smallest of the Great Lakes 

(GLFS, 2002). With a mean surface elevation of 75 meters above sea level, it has the 

lowest elevation of the Great Lakes (GLFS, 2002). It does however feature the highest 

ratio of watershed area to lake surface area among all of the Great Lake basins (LOLMP, 

1998). A full account of Lake Ontario’s physical characteristics (including depth) can be 

found in Table 1.1 and Figure 1.3.  

Table 1.1: Physical Characteristics of Lake Ontario 

 
Parameter Metric Units 

Low Water Datum (LWD) 74.00 m 

Length 311.00 km 

Width 85.3 m 

Shoreline Length 1168.38 km 

Total Surface Area 19010.42 km2 

Surface Area in Canada 10049.11 km2 

Surface Area in US 8961.31 km2 

Water Volume at LWD 1638.08 km3 

Average Depth Below 

LWD 

86.26 m 

Maximum Depth Below 

LWD 

244.45 m 

Average Surface Elevation 74.61 m 

Maximum Surface 

Elevation 

75.61 m 

Minimum Surface Elevation 73.59 m 
(Source: The Great Lakes Forecasting System: Lake Bathymetry Data, 2002) 



6 

 

 

 

Figure 1.3 – Lake Ontario Bathymetry 
(Source: The Great Lakes Forecasting System: Lake Bathymetry Data, 2002) 

 

Lake Ontario’s drainage basin covers portions of the Canadian Province of Ontario and 

New York State in the United States. It is fed primarily by the waters of Lake Erie 

through the Niagara River. The average inflow discharge is approximately 7000 m3/s 

(Atkinson et al., 1994), and this flow accounts for nearly 80 percent of the total inflow 

into Lake Ontario (Blair et al., 1993). Additional inflow (14 percent) stems from other 

Lake Ontario basin tributaries including the Genesee, Oswego, and Black Rivers in New 

York, and the Trent River in Ontario (LOLMP, 1998). The remaining inflow enters as 

precipitation and represents approximately six percent of the water body’s total volume 

(LOLMP, 1998). Approximately 93 percent of the water in Lake Ontario is drained to the 

northeast by the St. Lawrence River, with the remaining seven percent lost through 

evaporation (LOLMP, 1998). The outflow discharge rate into the St. Lawrence River 
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averages 7400 m3/second (Rukavina et al., 1990). The Lake Ontario Drainage Basin is 

represented in Figure 1.4.  

 
Figure 1.4 – Lake Ontario Drainage Basin 

(Source: LOLMP, 1998) 

 

The entire Great Lakes Basin can be characterized as having a temperate and humid 

climate (USEPA et al., 1987 in LOLMP, 1998). Warm, humid air masses originating in 

the Gulf of Mexico influence the Lake Ontario Basin in the summer months, whereas 

Arctic and Pacific air masses influence the area in the winter. Due to heat transfer 

processes, near shore areas feature temperate climates uncommon to Lake Ontario’s 

northern latitude. When atmospheric temperatures are high, radiant energy is absorbed by 

the water and subsequently released when temperatures are lower (LOLMP, 1998). 
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1.3.1 Data Samples and Sampling Locations 

 

The geology within the Lake Ontario Basin is classified as either non-depositional 

consisting of material such as bedrock common to inshore areas, or depositional materials 

such as glacial till and fine-grained particulates including silts and clays that accumulate 

in deeper offshore areas. In this analysis, field research conducted under the Environment 

Canada Great Lakes Sediment Assessment Program provided sediment contamination 

data for 32 variables measured at 70 specific sampled sites in 1998 (Figure 1.5). The sites 

were selected at intervals of approximately 30 km.  

 

The headings chosen to create the grid of measured locations were east/west and 

north/south. Deviations from the grid formation were made in order to assess Lake 

Ontario Areas of Concern (AOCs) including Hamilton Harbour and the mouth of the 

Niagara River. The U.S-Canada Great Lakes Water Quality Agreement define AOCs as 

"geographic areas that fail to meet the general or specific objectives of the agreement 

where such failure has caused or is likely to cause impairment of beneficial use of the 

area's ability to support aquatic life." Due to time and funding restraints, the spatial 

distribution of sediment contamination throughout Lake Ontario could not be more 

thoroughly measured. However, deterministic and geostatistical interpolation techniques 

can be used to estimate the spatial distribution of sediment contamination within Lake 

Ontario. 
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Surficial sediment samples were collected using a mini-box core sampling 

procedure. The samples collected during the survey consisted of fine-grained sediments 

classified as clay, sand, silt, or mud. The initial 3 centimetres of the sediment was sub-

sampled in order for analyses of persistent organic pollutants (POPs), metals, particle size 

characterization, and nutrients to be performed (Marvin et al., 2002). Table 1.2 

documents the specific contaminants that were measured at each of the locations within 

Lake Ontario and their corresponding federal guideline levels. 

 

Ouyang et al. (2002) concluded that heavy metal concentrations in sediment 

including lead, copper, zinc, and cadmium that were located above a sediment depth of 

1.5 metres posed a threat to the health of aquatic organisms. Furthermore, it is important 

to note that the influence of the particle size on contaminant concentrations in sediment 

usually shows an inverse correlation with grain size (Ouyang et al., 2002). 

 

1.4 The Problem 

 

The estimation of contaminant loading into Lake Ontario and identification of the 

sources for this loading are difficult tasks. Furthermore, research activities which exist in 

order to measure contaminant levels at specific locations throughout this body of water 

are both extremely time-consuming and expensive to fund. In order to identify the 

potential ‘hotspots’ (areas creating ecosystem risk) for sediment contamination in Lake 

Ontario, the Sediment Quality Index (SQI) was used. The SQI performs risk assessment 
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Table 1.2: Table of Contaminants and Federal Guidelines 

Contaminant Threshold Effect Level 

TEL 
Probable Effect Level 

PEL 

Arsenic 5.9 ug/g 17 ug/g 

Cadmium 0.6 ug/g 3.53 ug/g 

Chromium 37.3 ug/g 90 ug/g 

Copper 35.7 ug/g 196.6 ug/g 

Lead 35 ug/g 91.3 ug/g 

Nickel 16 ug/g 75 ug/g 

 Zinc 123 ug/g 314.8 ug/g 

Mercury 0.17 ug/g 0.486 ug/g 

Alpha-HCH or BHC 6 ng/g 200 ng/g 

Hexachlorobenzene (HCB) 20 ng/g 480 ng/g 

Beta-HCH (Lindane) 0.94 ng/g 1.38 ng/g 

Heptachlor Epoxide 0.6 ng/g 2.74 ng/g 

Alpha-Chlordane 4.5 ng/g 8.87 ng/g 

Dieldrin 2.85 ng/g 6.67 ng/g 

pp’ – DDE 1.42 ng/g 6.75 ng/g 

Endrin 2.67 ng/g 62.4 ng/g 

pp’ – DDD 3.54 ng/g 8.51 ng/g 

op’ - + pp’ DDT 1.19 ng/g 4.77 ng/g 

Mirex 7 ng/g 2600 ng/g 

Polychlorinated biphenyls (PCBs) 34.1 ng/g 277 ng/g 

Dioxins and Furans 0.85 ng/g 21.5 ng/g 

Phenanthrene 41.9 ng/g 515 ng/g 

Anthracene 46.9 ng/g 245 ng/g 

Fluoranthene 111 ng/g 2,355 ng/g 

Pyrene 53 ng/g 875 ng/g 

Benzo[a]anthracene 31.7 ng/g 385 ng/g 

Chrysene 57.1 ng/g 862 ng/g 

Benzo[b/k]fluoranthene 240 ng/g 26,800 ng/g 

Benzo[a]pyrene 31.9 ng/g 782 ng/g 

Indeno[1,2,3-cd]pyrene 200 ng/g 6400 ng/g 

Dibenzo[a,h]anthracene 6.22 ng/g 135 ng/g 

Benzo[g,h I]perylene 170 ng/g 6400 ng/g 

Total Polycyclic Aromatic  

Hydrocarbons (PAHs) 

4,000 ng/g 200,000 ng/g 

(Source: Canadian Council of Ministers of the Environment, 1999) 

 

by providing a general description of sediment quality on the basis of whether existing 

federal contamination guidelines are exceeded. 
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1.4.1 Sediment Contamination Research 

 

The United States Environmental Protection Agency’s (USEPA) Assessment and 

Remediation of Contaminated Sediment (ARCS) program exists in order to determine the 

nature and extent of sediment contamination in the Great Lakes (Burton et al., 1996). In 

ARCS analyses, benthic invertebrate communities are often used as bioindicators for 

sediment contamination. Since the habitat of benthic communities coincides with lake-

bottom sediment, small crustaceans commonly referred to as Amphipod Diporeia have 

been used as potential bioindicators for contaminants including metals in sediment (Song 

and Breslin, 1998). Many studies have reported changes in benthic community 

composition resulting from sediment contamination (Hilsenhoff, 1987; Waterhouse and 

Farrell, 1985; Clements et al., 1992 in Canfield et al., 1996). Processes such as the 

Sediment Quality Triad (SQT) approach (Chapman, 1992 in Canfield et al., 1996) are 

also used in evaluations of how benthic community composition measures can aid in the 

assessment of contaminated and uncontaminated sediment (Canfield et al., 1996). The 

SQT is a weight of evidence approach that incorporates measures of sediment chemistry, 

sediment toxicity, and benthic community composition in evaluations of sediment quality 

(Canfield et al., 1996). 

 

Guidelines, objectives, and criteria represent numerical sediment quality 

assessment values used in sediment toxicology. Examples of such assessment values 

include the Threshold Effect Level (TEL) and Probable Effect Level (PEL), which were 

used in this analysis. The TEL represents “the concentration below which adverse 
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biological effects are expected to occur rarely,” whereas, the PEL defines the level above 

which adverse effects are expected to occur frequently (CCME, 1999). These assessment 

values are developed using a weight of evidence approach in which biological and 

chemical data from modeling, laboratory, and field studies performed on fresh water 

sediments are analyzed (Smith et al., 1996). The calculation of two such assessment 

values defines three ranges of chemical concentration: those that are rarely, occasionally, 

and frequently associated with adverse biological effects. 

 

In past research, numerical quality assessment values were created and used in a 

comparison to assess the TEL and PEL as good indicators of the severity of sediment 

contamination. In these analyses, the TEL was compared to the four following 

assessment values: (1) Ontario’s Provincial Sediment Quality Guidelines (Lowest effect 

Levels or LEL) (Persaud et al., 1992); (2) the Minimum Effect Levels (MEL) developed 

for the St. Lawrence River (MENVIQ/EC, 1992 in Smith et al., 1996); (3) the Effects 

Range Low (ERL), created by the National Oceanic and Atmospheric Administration 

(NOAA); and (4) the sediment effect concentrations for benthic communities (Ingersol et 

al., 1996 in Smith et al., 1996). The PEL was similarly compared to the four following 

values: (1) the Severe Effect Levels (SEL) (Persaud et al., 1992); (2) the Toxic Effect 

Levels (MENVIQ/EC, 1992 in Smith et al., 1996); (3) the Effect Range Median (ERM) 

values (Long, 1992 in Smith et al., 1996); and (4) the probable effect levels reported for 

benthic communities (Ingersol et al., 1996 in Smith et al., 1996). 
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 Sediment quality can be assessed by utilizing the Sediment Quality Index (SQI). 

This measure of sediment quality is derived from the Canadian Water Quality Index 

(CWQI). The SQI formula, based on the CWQI, was developed by the British Columbia 

Ministry of Environment, Lands and Parks, and modified by the Ministry of Environment 

in Alberta (CCME, 1999). A sediment quality index is a means of summarizing complex 

sediment contamination data mathematically, by combining all existing measures of 

contamination to provide a general description of sediment quality within a body of 

water. The index is useful in assessing sediment quality relative to its desired state, 

defined by specific objectives. Additionally, this index addresses the degree to which 

water quality is affected by human activity. 

 

Marvin et al. (2002) applied the SQI to an assessment of sediment quality in 

Lakes Erie and Ontario on the basis of the federal PEL guideline (contaminants such as 

Mirex that reside within sediment in minute concentrations utilized the provincial LEL 

guideline). They did not, however, use interpolation procedures to estimate sediment 

quality throughout the lakes; SQI scores were calculated on the basis of point data values 

in order to examine the spatial pattern of sediment quality. The spatial trends in sediment 

quality in the two lakes reflected the trends for individual contaminant classes such as 

mercury and PCBs. The Lake Ontario data is featured in this analysis. 
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1.4.2 Objectives 

 In this study, the characteristics and spatial distribution of 32 contaminants in 

Lake Ontario sediment are investigated using field measurements. The specific objectives 

in this analysis can be summarized as:  

1) Assess the Sediment Quality Index as a satisfactory measure for the areas 

in Lake Ontario where sediment quality is frequently threatened or 

impaired;  

2) Identify whether deterministic or geostatistical interpolation methods are 

more appropriate methods for predicting spatial distributions of 

contaminants in sediment using SQI scores; 

3) Assess existing interpolation procedures and identify an optimal method 

for the 32 specific contaminants measured in the Lake Ontario sediment 

samples. 
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Chapter 2: Literature Review 

 
2.1 Sedimentation Processes in Lake Ontario 

 

Lake Ontario is composed of two main sedimentary basins: (1) the Kingston basin 

(a relatively shallow basin located at the northeastern end of Lake Ontario; and (2) a main 

basin including the Niagara, Mississauga, and Rochester Basins (relatively deep sub-

basins bordered by shallow inshore zones extending along the entire perimeter of the 

main basin) (LOLMP, 1998). Figure 2.1 displays the Lake Ontario sedimentary basins.  

 
Figure 2.1: Lake Ontario Sedimentary Basins 

(Source: LOLMP, 1998) 

 

Analyses performed on suspended sediment concentrations demonstrated that the Niagara 

River supplies approximately 1.8 million tons of sediment to Lake Ontario annually 

(Joshi et al., 1992). A physical feature located at the mouth of the Niagara River named 

the Niagara Bar is an example of a shallow inshore zone created by the inflow of 

sediment. Sediment is deposited at this junction because the velocity of the current in 



17 

 

Lake Ontario is lower than that of the Niagara River. As a result, shear stress on the river 

bottom is increased, and buoyant discharge conditions result in a defined surface plume. 

Due to inertia and buoyancy, and after a moderate distance, the Coriolis acceleration, the 

plume is turned clockwise in an easterly direction (Atkinson et al., 1994).  

  

 The majority of water circulation in Lake Ontario occurs within its main sub-

basins and eastern shore. However, discharges by rivers and estuaries can modify the 

circulation of Lake Ontario waters, due to baroclinic pressure gradients caused by 

buoyancy input and through the initial momentum flux of the discharge (Atkinson et al., 

1994). It is arguable that a lakewide circulation with an eastern heading may be initiated 

from the Niagara River inflow. Furthermore, the area is affected by prevailing winds 

from a west-northwest direction (LOLMP, 1998). The combination of these factors 

results in water circulation that moves in a counter-clockwise motion (Sly, 1990), and 

significantly less net flow along the north inshore zone of Lake Ontario (LOLMP, 1998). 

Figure 2.2 displays the annual current circulation in Lake Ontario featuring a general 

west-east heading. 

 

2.2 Lake Ontario’s Lakewide Management Plan 

 

Lake Ontario is vulnerable to human activities that have occurred throughout the Lake 

Superior, Michigan, Huron, and Erie basins, since it is located at the bottom end of the 

Great Lakes system. Over the past century, the Lake Ontario ecosystem has experienced 

negative  changes  as  a  result  of  toxic  pollution  originating  from  the  excessive 
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Figure 2.2 – Annual Current Circulation Patterns in Lake Ontario 

(Source: Beletsky et al., 1999) 

 

development of the Great Lakes region. Major industrial centres including Hamilton, 

Toronto, Oshawa, and Kingston are situated on its Canadian shoreline to the north. The 

cities of Rochester and Oswego are located on its American shore in the state of New 

York to the south. These point sources of pollution, combined with dredging practices in 

the upstream Great Lakes tributaries such as the Niagara River, have been major 

contributors to poor sediment and water quality in Lake Ontario (GLA, 1995). In 1972, 

the Canadian and United States governments agreed that water quality was to be 

improved in the Great Lakes, and future pollution input levels were to be decreased 

(Zarull et al., 1999). The Great Lakes Water Quality Agreement was renewed in 1987 in 

order to ban and control the contaminants entering the Great Lakes and restore the health 

of the Great Lakes ecosystem (LOLMP, 1998). In addition, a Lakewide Management 

Plan (LMP) was developed for each of the Great Lakes and signed by the four parties 

involved in its implementation: Region II of the USEPA, Environment Canada (EC), the 

New York State Department of Environmental Conservation (NYSDEC), and the Ontario 

Ministry of the Environment (MOE). Given the abundance of toxins identified in the 
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Niagara River and Lake Ontario, it was necessary for the four involved parties to develop 

a Lake Ontario Toxics Management Plan (LOTMP). The main purpose of LOTMP was 

to “define the toxics problem in Lake Ontario and to develop and implement a plan to 

eliminate the problem through both individual and joint agency actions” (LOLMP, 1998). 

 

To initiate implementation of LOTMP, it was necessary to identify the priority 

toxic chemicals residing in Lake Ontario. This was accomplished on the basis of 

‘impairment of beneficial use(s),’ which “is a change in the chemical, physical, or 

biological integrity of the Great Lakes System sufficient to cause any of the following 

(Hartig et al., 1990):  

(1) Restrictions on fish and wildlife consumption; 

(2) Tainting of fish and wildlife flavour; 

(3) Degradation of fish and wildlife populations; 

(4) Fish tumours or other deformities; 

(5) Bird or animal deformities or reproductive problems; 

(6) Degradation of benthos; 

(7) Restrictions on dredging activities; 

(8) Eutrophication or undesirable algae; 

(9) Restrictions on drinking water consumption, or taste and odor problems; 

(10) Closing of beaches; 

(11) Degradation of aesthetics; 

(12) Added costs to agriculture or industry; 

(13) Degradation of phytoplankton and zooplankton populations; 

(14) Loss of fish and wildlife habitat.”  

 

In a study conducted by Zarull et al. (1999), all use impairments (excluding tainting of 

fish and wildlife flavour, restrictions on drinking water consumption, and the closing of 
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beaches) are potentially associated with contaminated sediment. It was also necessary to 

identify the critical pollutants in Lake Ontario “that persist at levels that, singly or in 

synergistic or additive combination, are causing, or are likely to cause, impairment of 

beneficial uses past application of regulatory controls due to their (GLA, 1995): 

(1) Presence in open lake waters; 

(2) Ability to cause or contribute to a failure to meet Agreement objectives through 

their recognized threat to human health and aquatic life; 

(3) Ability to bioaccumulate.”  

 

In the Niagara River and Lake Ontario, the Lakewide Critical Pollutants identified as the 

focus of reduction activities are as follows (LOLMP, 1998): 

(1) polychlorinated biphenyls (PCBs); 

(2) 1,1,1-Trichloro-2,2-bis(P-chlorophenyl)ethane (DDT) and its metabolites; 

(3) Mirex; 

(4) Dioxins/Furans;  

(5) Mercury; and 

(6) Dieldrin. 

 

These toxins were identified as the critical pollutants in the Lake Ontario basin because 

they bioaccumulate and remain in water, sediment, and biota for long periods of time. 

 

2.3 Critical Pollutants and Sources of Loading in Lake Ontario 

 

 Estimating the critical pollutant loading that enters Lake Ontario via sources 

including rivers/tributaries, precipitation, sewage treatment facilities, waste sites, 

agricultural runoff, and other sources is a difficult task. The sources for environmental 

toxicants can generally be categorized as point sources or non-point sources. A point 
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source of loading are discharges of chemicals that can be identified or measured, 

including industrial or municipal effluent outfalls, chemical or petroleum spills and 

dumps, smokestacks, and other stationary atmospheric charges (Hodgson et al., 1997). 

Non-point sources include more diffuse inputs over large areas, that do not have a 

identifiable point of entry, such as pesticide and fertilizer runoff, mobile source 

emissions, atmospheric deposition, and contaminated sediment or mine tailings (Hodgson 

et al., 1997). The Great Lakes Water Quality Agreement (GLWQA) categorizes critical 

pollutant loadings into four general groups: 

(1) loadings from sources outside the Lake Ontario Basin 

(2) loadings from sources inside the Lake Ontario basin 

(3) atmospheric loadings and 

(4) releases from Lake Ontario to the St. Lawrence River and volatilization to the 

atmosphere (LOLMP, 1998). 

Loading estimates are often inaccurate due to the accumulation of data from various 

sources and variations in the data collection methodologies employed by different 

monitoring programs. With inaccurate data, contaminants measured as outflow from the 

lake, including PCBs and DDT, may be measured at higher levels than the inflow of 

these contaminants. An explanation for such an event is that contaminants are being 

released into Lake Ontario from sediments located at the bed of the water body (LOLMP, 

1998). The water retention time within Lake Ontario is estimated at approximately seven 

years (Sly, 1991). However, contaminants have a tendency to bind to sediments on lake 

bottoms. If this process occurs, these contaminants can be covered over by additional 

sediment, and remain in the system for an indefinite period of time. Thus, toxic 
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substances have the ability to remain in a lake ecosystem for periods of time extending 

past a seven-year retention span (Sly, 1991). 

 

 While toxic substances have the capacity to remain in lake-bottom sediment for 

extended periods of time, they also may be re-suspended into the water column by the 

processes of bioturbation and re-suspension due to storm events and dredging activities.  

If this process occurs, these contaminants may be transferred to higher trophic levels in 

the food chain. This is possible due to the presence of ‘benthos’, organisms whose habitat 

coincides with lake-bottom sediments (Song and Breslin, 1998). Benthic organisms can 

be a significant source of food for aquatic organisms.  

 

The Lake Ontario AOCs located in New York State include Eighteen Mile Creek, 

the Niagara River, Oswego River/Harbour, the Rochester Embayment, and the St. 

Lawrence River at Massena. In the Province of Ontario, AOCs include the Bay of Quinte, 

Port Hope, the Toronto Waterfront, and Hamilton Harbour. Sediment contamination 

levels have been reported at higher levels in these regions than in open-water areas (EPA, 

2000). In these AOCs, benthic communities have been degraded. 

  

 Lake Ontario’s benthic communities are dominated by small crustaceans 

(Diporeia spp.) and worms (Stylodrillus heringianus) (Song and Breslin, 1998). The 

health of benthic organisms in Lake Ontario is a good indicator of the lake’s 

environmental quality. This is because such organisms require habitats of cold water that 
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are well-oxygenated and free from toxic pollutants. Thus, poor sediment and water 

quality are precursors for an unhealthy benthic organism. 

 

 The presence of contaminated bottom sediment is also a concern in nearshore 

areas that practice dredging activities. In such areas, dredging is necessary in order to 

maintain channels for freighters used in shipping goods and for the operation of personal 

watercraft. The most significant issue in the dredging process is the disposal of toxic 

contaminants that may exist within the sediment. Disposal areas include offshore, upland, 

and confined regions of the basin. There is no assurance that contaminants will be 

disposed of properly, and so toxins may re-enter the aquatic system. 

 

2.3.1 Polychlorinated Biphenyls (PCBs) 

 

The manufacturing of PCBs occurred between the years 1929 and 1977. PCBs 

were utilized as an industrial safety product in processes that required high heat inputs, 

and/or were fire hazards. After 1977, the production of PCBs no longer continued after 

the discovery that “PCBs released into the environment were bioaccumulating to levels of 

concern in a wide range of organisms” (GLA, 1995). Following the banning of PCB 

production, this contaminant is still considered a critical pollutant. As seen in Table 2.1, 

its levels continue to exceed human health standards and its levels may pose health and 

reproduction problems in aquatic and terrestrial wildlife (LOLMP, 1998). 
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Table 2.1: Origin of PCB Loadings to Lake Ontario 

Origin of Loading Loading (kg/yr) 

Upstream Great Lakes Basins 302 kg/yr 

Niagara River Basin 138 kg/yr 

Lake Ontario Basin (Point and Non-Point 

Source) 

100 kg/yr 

Atmospheric Loading  64 kg/yr 
(Source: LOLMP, 1998) 

 

 

2.3.2 DDT and Its Metabolites 

 

 DDT is primarily a pesticide that was developed in the 1940’s. Between the years 

1946 and 1972, it was the most commonly used pesticide in North America (GLA, 1995). 

After the discovery that “DDT and its breakdown products were causing widespread 

reproductive failures in various wildlife species,” its agricultural use in North America 

was banned (LOLMP, 1998).  

 

 The levels of DDT in the Great Lakes have decreased significantly since the 

banning of the pesticide. It is hypothesized that a significant amount of its remaining 

tributary loadings consist of atmospheric deposition (LOLMP, 1998). Thus, it is difficult 

to decipher the amount of DDT each source contributes to its total loading within the 

Lake Ontario Basin. This ambiguity explains why atmospheric and point/non-point 

sources of contamination exist as one measurement value in Table 2.2. 
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Table 2.2: Origin of DDT Loadings to Lake Ontario 

Origin of Loading Loading (kg/yr) 

Upstream Great Lakes Basins 96 kg/yr 

Atmospheric Deposition and Sources 

within the Lake Ontario Basin  

33.5 kg/yr 

(Source: LOLMP, 1998) 

 

2.3.3 Mirex 

 

 Mirex is a chlorinated organic compound that was used throughout the United 

States as an insecticide to control the imported fire ant. Mirex is most widely produced 

for its use as a flame retardant in industrial, manufacturing, and military applications 

(Sergeant et al., 1993). It is also widely known for its use as a pesticide. Its use and 

production is now banned in North America. Mirex is identified as a critical pollutant, as 

seen in Table 2.3, because its “levels in some Lake Ontario fish continue to exceed 

human health standards” (LOLMP, 1998) and for decades it has been identified as a 

contaminant that accumulates in aquatic ecosystems and affects sediments, fish, and birds 

(Scrudato and DelPrete, 1982). 

Table 2.3: Origin of Mirex Loadings to Lake Ontario 

Origin of Loading Loading (kg/yr) 

Niagara River Basin 1.8 kg/yr 

Oswego River 0.9 kg/yr 

(Source: LOLMP, 1998) 

 

2.3.4 Dioxins and Furans 

 

 Dioxins and furans are waste by-products from industrial processes such as paper 

production (Pearson et al., 1998). Processes that typically produce dioxins and furans 
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include the operation of incinerators and internal combustion engines. Low levels of 

these contaminants are also produced in forest fire and wood burning ovens (Pearson et 

al., 1998). Dioxins are identified as critical pollutants because “levels of these 

contaminants exceed human health standards in some Lake Ontario fish and because 

these chemicals may limit the full recovery of the Lake Ontario bald eagle, mink, and 

otter populations by reducing the overall fitness and reproductive health of these species” 

(LOLMP, 1998). 

 

 The largest known source of dioxins and furans is atmospheric deposition that 

accounts for approximately 5 grams per year (LOLMP, 1998). Potential non-atmospheric 

sources exist because of impurities in industrial chemicals (Pearson et al., 1998). Due to 

low levels of these contaminants in the Great Lakes Basins, quantifying their presence is 

a difficult task. The Niagara River, through data from sediment cores, mussels, and fish 

(Spottail Shiners), is identified as a source of dioxins and furans, and thus, it acts as a 

source of the contaminants into Lake Ontario. 

 

2.3.5 Mercury 

 

 Mercury is a naturally occurring element that can be found within most rocks and 

soils. Unlike heavy metals such as copper and zinc, which are essential biological 

micronutrients required for the growth of organisms, mercury is considered to be 

extremely toxic with respect to human health and aquatic life (Ouyang et al., 2002). 

Mercury was initially used as an additive to paints in order to control the creation of 
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mildew. Presently, its most common uses include medical and dental products and 

thermometers, and it can be found within batteries (LOLMP, 1998). 

 

 A case study regarding Minamata Bay in Japan can be used as an example of the 

effects of mercury on aquatic ecosystems. During the 1950’s and 1960’s, wastes 

(including mercury) were created at a chemical and plastics plant and drained into 

Minamata Bay. This mercury was converted into absorbed methyl mercury by bacteria 

found residing within aquatic sediments. By 1970, 107 human deaths were attributed to 

mercury poisoning due to the consumption of fish and shellfish by the local population 

(Hodgson et al., 1997). 

 

2.3.6 Dieldrin 

 

 Dieldrin is a former pesticide that is presently banned from use throughout North 

America. Through a natural breakdown process, another pesticide named Aldrin 

transforms into Dieldrin. Aldrin is used to control pests in soil such as termites on corn 

and potato crops (GPA, 2002). This is considered a critical pollutant because, as seen in 

Table 2.4, “Dieldrin concentrations in water and fish tissue exceed the Great Lakes Water 

Quality Initiative criteria throughout the lake” (LOLMP, 1998). 

Table 2.4: Origin of Dieldrin Loadings to Lake Ontario 

Origin of Loading Loading (kg/yr) 

Upstream Great Lakes Basins 43 kg/yr 

Atmospheric Deposition 13 kg/yr 

Point and Non-Point Sources within the 

Lake Ontario Basin 

 9 kg/yr 

(Source: LOLMP, 1998) 
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2.4 Application of the Sediment Quality Index in Lake Ontario 

 

  Contamination associated with sediments in bodies of water such as Lake Ontario 

impedes attempts to conserve natural ecosystems found in the Great Lakes Basin. To 

uncover the role that humans actively play in discharging harmful contaminants into 

these ecosystems, Environment Canada conducts surveys in the Great Lakes in order to 

identify the specific occurrence and spatial distribution of toxic contaminants in these 

environments. The surveys provide the ability to observe sediment concentration data 

within the context of sediment quality guidelines, and act as indicators of areas identified 

as potential risks to surrounding environments. The Canadian Council of Ministers of the 

Environment (CCME) has adopted Canadian Sediment Quality Guidelines in order to 

protect aquatic ecosystems from contaminants including PAHs, organochlorine pesticides 

(OCs), PCBs, and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs) 

(Marvin et al., 2002). 

 

   The availability of data depicting sediment contamination in Lake Ontario 

presents the opportunity for the evaluation of sediment quality by using the Canadian 

Sediment Quality Guidelines (CCME, 1999). The specific guidelines were designed as 

aids in the identification of potential ecosystem risk, and in order to assist in the 

prioritization of sediment quality concerns (Marvin et al., 2002). Using sediment 

contamination levels and spatial interpolation among the 70 stations in Lake Ontario, 

provides a means for assessing the relative risk for contamination between sites of 

sediment quality measurement. The basis for risk assessment is the individual site’s 
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departure from the ‘Threshold Effect Levels’ or ‘Probable Effect Levels’ (whichever are 

being used in the specific analysis). Fundamentally, the SQI is an index of sediment 

quality over space (Marvin et al., 2002). The SQI is effective because it is sensitive to the 

degree of contamination above or below a set guideline. Given this sensitivity, poorer 

scores should result at sites with sediment contamination exceeding the TELs and PELs. 

For Mirex, a contaminant for which Canadian Federal guidelines have not been 

published, the Ontario Provincial lowest effect level (LEL) was used (Marvin et al., 

2002). The ‘LEL’ for the province of Ontario can be defined as “a level of contamination 

that has no effect on the majority of sediment-dwelling organisms and where the 

sediment is clean-to-marginally polluted” (Persaud et al., 1993 in Marvin et al., 2002).  

 

2.5 Spatial Interpolation – Kriging 

 

Kriging techniques were initially developed by a South African mining geologist 

named D.G. Krige (Bailey et al., 1995). Kriging methods utilize statistical models that 

incorporate autocorrelation among a group of measured points to create prediction 

surfaces (Johnston et al., 2001). Specifically, weights are assigned to measurement points 

on the basis of distance in which spatial autocorrelation is quantified in order to weight 

the spatial arrangement of measured sampling locations (Johnston et al., 2001). By 

accounting for statistical distance with a variogram model, as opposed to Euclidean 

distance utilized in deterministic interpolation, customization of the estimation method to 

a specific analysis is possible. Isaaks and Srivastava (1989) state that if the pattern of 

spatial continuity of the data can be described visually using a variogram model, it is 
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difficult to improve on the estimates that can be derived in the kriging process. 

Furthermore, kriging accounts for both the clustering of nearby samples and for their 

distance to the point to be estimated (Isaaks and Srivastava, 1989). Given the statistical 

properties of this method, measures of certainty or accuracy of the predictions can be 

produced in the cross-validation process that will be documented in a later section. It is 

arguable that kriging is the optimal interpolation method on the basis of its functionality 

and its ability to assess error statistically, when forming predicted surfaces. In the 

following sub-sections, kriging models including ordinary, simple, universal, indicator, 

co-kriging, and probability kriging are outlined. 

 

2.5.1 Ordinary Kriging 

 

 Ordinary kriging is the most flexible kriging model because it functions under the 

assumption that the mean u is an unknown constant, and thus, the random errors at the 

data locations are unknown (Johnston et al., 2001). Ordinary kriging is most appropriate 

for data that have a spatial trend and, furthermore, this system can easily be applied to 

block (average) estimation from point estimation. Thus, the average of a specific number 

of point estimates can be represented as a direct block estimate if one wishes to group the 

data values (Isaaks and Srivastava, 1989). 
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2.5.2 Simple Kriging 

 

 The assumption of the model when using simple kriging is similar to ordinary 

kriging. However, the mean u in the equation refers to a known constant, rather than an 

unknown constant. Furthermore, it is based on the assumption of second order 

stationarity (Olea, 1991 in Burrough and McDonnell, 1998). Second order stationarity 

refers to the assumptions that the data come from a random process with a constant mean, 

and that spatial covariance only depends on the distance and direction separating any two 

locations (Johnston et al., 2001). If it is assumed that the mean u is a known constant, 

then the random errors at the data locations are also known. If the random error at each 

data location is known, the estimation of autocorrelation among the data locations is 

optimal (Johnston et al., 2001). However, the assumption of knowing the exact mean is 

often unrealistic, (Johnston et al., 2001) and data from the physical environment is often 

too restrictive to assume second order stationarity. In such datasets, ordinary kriging is 

usually applied (Burrough and McDonnell, 1998). 

 

2.5.3 Universal Kriging 

 

 Universal kriging follows a similar model to ordinary and simple kriging. 

However, the mean u is replaced by empirical regression transfer models or deterministic 

functions such as second-order polynomials to form the trend (Burrough and McDonnell, 

1998). The random errors produced using this method are obtained by subtracting the 
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deterministic function from the data representing the original locations (Johnston et al., 

2001). Using this model, autocorrelation is modeled from the random errors.  

 

2.5.4 Indicator Kriging 

 

 Indicator kriging is based on the following model: 

I(s) = u + e(s) (1) 

where u is assumed to be an unknown constant, e(s) represents the random error at the 

location s, and I(s) is a binary variable (Johnston et al., 2001). This model works 

similarly to ordinary kriging, however, binary data can be created through thresholds 

such as the PEL in this analysis. Due to the indicator variables being 0 or 1, the 

interpolation maps display the probabilities of a specific variable (eg. Mercury) being in a 

class that is indicated by the binary number 1. An example of its use is an analysis used 

to produce maps of the probability that the lead concentration at particular sites in the city 

of Sydney, Australia were greater than local regulatory guidelines (Markus and 

McBratney, 2001).  

 

2.5.5 Cokriging 

 

 In this analysis, contamination levels for 32 variables were measured at each of 

the 70 locations throughout Lake Ontario. However, in alternative analyses, one variable 

may not be measured as frequently due to reasons such as a lack of funding. If these 

variables are spatially correlated with one another, co-kriging can be used to apply the 
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spatial variation of one variable to aid in the mapping of a second (Burrough and 

McDonnell, 1998). However, Cokriging requires a larger amount of estimation, including 

the estimate of autocorrelation for each variable and its cross-correlations. Each 

estimation adds variability to the prediction (Johnston et al., 2001). 

 

2.5.6 Probability Kriging 

 

 Probability kriging is a compilation of both indicator kriging and co-kriging. If 

this method is used in analysis, a prediction map is produced displaying the probability 

that a specific attribute exceeds a set threshold (Burrough and McDonnell, 1998). 

Probability kriging strives to perform the same predictions as indicator kriging, however, 

co-kriging is used in order to improve the accuracy of the predictions (Johnston et al., 

2001).  
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Chapter 3: Methodology 

  

 In order to predict the sediment contamination levels at unknown locations 

throughout Lake Ontario, it was necessary to assess deterministic and geostatistical 

methods of spatial interpolation. In completing this task, deterministic interpolation 

methods including Inverse Distance Weighting (IDW), Radial Basis Functions (RBF), 

Global Polynomial Interpolation (GPI), and Local Polynomial Interpolation (LPI) were 

investigated relative to geostatistical (kriging) methods. In order to compare these 

methods, SQI scores were utilized for interpolation between the 70 sampling sites 

throughout Lake Ontario. 

 

  Identification of regions with sediment that is frequently threatened or impaired 

was performed using the Sediment Quality Index. The SQI scores were then used as 

general indicators of sediment contamination. Existing kriging methods were examined 

and an assessment of the optimal kriging method was performed using the Environmental 

Systems Research Institute’s (ESRI) ArcGIS 8.1 software (ESRI, 2001). The analysis in 

this research paper was limited to this software due to its efficiency and the large quantity 

of spatial interpolations necessary to accomplish the desired objectives. Furthermore, 

using a single software package for all interpolations reduces the possibility of 

discrepancies between results produced using alternative methods. Prediction maps 

featured as ArcGIS contour surfaces were created for each individual contaminant. It was 

on the basis of the resulting contour prediction maps and cross-validation measures that 
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the optimal interpolation method for indicating the sediment contamination in Lake 

Ontario could be determined. 

 

3.1 Calculation of the Sediment Quality Index (SQI)  

 

 In order to calculate the SQI, the specific body of water for which the index 

applies and the specific variables and objectives (contaminant concentrations exceeding 

their PELs) applying to the study must be defined. The Sediment Quality Index, which 

computes an index score on a per site basis, with no grouping of sites (Marvin et al., 

2002), is based on a two-component equation including ‘scope’ and ‘amplitude’ only. A 

third ‘frequency’ component, used to calculate the Canadian Water Quality Index 

(CWQI), is excluded in the calculation of the SQI because frequency (the amount of tests 

exceeded within a group of sites) is equivalent to scope when applied to a single site with 

no temporal data (Marvin et al., 2002). Therefore, ‘frequency’ would be redundant if 

applied in the SQI calculation, in which the components are described as: 

 F1 – The ‘scope’ is a representation of the percentage of contaminants that do not meet 

their objectives even once during the time period they are being considered (Marvin et 

al., 2002). In essence, these are failed tests, measured relative to the total number of 

variables considered. It can be calculated as follows: 

 

F1 = (Number of failed variables / Total number of variables) * 100 (2) 
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F2 – The ‘amplitude’ is a representation of the amount by which failed test values do not 

meet their objectives (exceed the PEL for contaminant concentration in sediment) 

(Marvin et al., 2002). Three steps are necessary to calculate F2: 

Step 1: First, excursions are calculated. The term ‘excursion’ refers to the number of 

times an individual concentration is greater than the objective. For the case in which the 

test value must not exceed the objective, the calculation is as follows: 

 

Excursioni = (Failed Test Valuei / Objectivej) – 1    (3) 

 

For the case in which the test value must not fall below the objective, the calculation is:  

 

Excursioni = (Objectivej / Failed Test Valuei) – 1    (4) 

 

Step 2: The collective amount by which individual tests are out of compliance is 

calculated by summing the excursions of individual tests from their objectives and 

dividing by the total number of tests (this includes both those meeting objectives and 

those not meeting objectives). This variable is referred to as the ‘normalized sum of 

excursions, or nse and can be calculated with the following equation: 

 

nse = (the summation of excursioni / # of tests)    (5) 
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Step 3: Using excursions, the amplitude, F2 is calculated. F2 can be calculated utilizing an 

asymptotic function, which scales the normalized sum of the excursions from objectives 

to produce a range between 0 – 100. The calculation is as follows: 

 

F2 = (nse / 0.01 * nse + 0.01)       (6) 

 

Once these two factors have been obtained, The Sediment Quality Index (SQI) can be 

calculated as: 

 

SQI = 100 - 414.1/2)(2)( 21 FF        (7) 

   

The value 1.414 is used to normalize the resulting values to a range between 0 and 100. 

This value is generated because [1002 + 1002] 0.5 = 141.4 (Marvin et al., 2002). According 

to this scale, a water quality of 100 is the ‘best’ and a water quality of 0 is the ‘worst’ 

(CCME, 2001). 

 

 F1 and F2 are combined to produce a single value (between 0 and 100) that 

describes sediment quality in the following categories: 

 

Excellent: (SQI Value of 95 – 100) – sediment is devoid of any contaminant-

related impairment and is indicative of ambient environmental background 

conditions. Index values within this range are achieved when practically all 

measurements fall within the guideline values. 
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Good: (SQI Value 80 – 94) – only a minor degree of sediment impairment is 

indicated. Most measurements fall within guideline values and rarely deviate from 

ambient environmental background levels. 

  

Fair: (SQI Value 60 – 79) - sediment quality is usually protected but occasionally 

threatened or impaired. Some measurements deviate from ambient environmental 

background levels. 

 

Marginal: (SQI Value 45 – 59) - sediment quality is frequently threatened or 

impaired. Some measurements deviate from ambient environmental background 

levels.  

 

Poor: (SQI Value 0 – 44) - sediment quality is almost always threatened or 

impaired. Most measurements deviate substantially from ambient environmental 

background levels (Marvin et al., 2002). 

 

‘Categorization’ is the term for the assignment of the SQI values to the four categories 

for any particular contaminant and is based on three factors including the most reliable 

information available for each specific application, leading expert opinions, and the 

expectation of sediment quality by the general public (CCME, 2001).  

  

 The basic SQI formula encompasses all key components of sediment quality, can 

be easily calculated, and is flexible in various applications. These applications include 

direct comparisons among sites that employ identical variables and objectives. 

Comparison among sites can be problematic when variables and objectives vary at each 

site. If this issue arises, it is most beneficial to compare sites on the basis of their ability 

to meet relevant objectives. 
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3.2 Spatial Interpolation: Deterministic Methods 

 

 When utilizing deterministic methods for spatial interpolation, contour surfaces 

are created from measured points (i.e. stations for the measurement of sediment 

contamination) on the basis of their extent of similarity (Inverse Distance Weighting) or 

the extent to which the surface is smoothed (Radial Basis Functions) (Johnston et al., 

2001). Furthermore, deterministic methods can be separated into global and local groups. 

Global interpolation techniques utilize an entire dataset in order to calculate predictions, 

whereas local techniques use small regions (known as neighbourhoods) that are 

designated within the larger spatial areas in order to calculate predictions (Johnston et al., 

2001). Another distinction for deterministic interpolation methods is whether they are 

exact or inexact interpolators. Exact interpolators are used to predict values that are 

identical to the measured values at sampling locations, whereas inexact interpolators 

predict values that differ from values measured at sampling locations (Johnston et al., 

2001). Table 3.1 outlines the deterministic methods for spatial interpolation that are 

offered within the Geostatistical Analyst extension of ArcGIS. 

Table 3.1: Deterministic Methods for Spatial Interpolation 

 Global Interpolator Local Interpolator 

Exact Interpolator  Inverse Distance 

Weighting, 

Radial Basis Functions 

Inexact Interpolator Global Polynomial Local Polynomial 

 

  

 In order to predict the degree of sediment contamination in areas other than the 70 

measurement sites for sediment core sampling in Lake Ontario, deterministic methods 
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featured in Table 3.1 were each assessed independently utilizing the Sediment Quality 

Index values for interpolation. 

 

3.2.1 Inverse Distance Weighted Interpolation (IDW) 

 

 IDW is an interpolation method that assumes that entities located in close 

proximity to one another are more similar than those located farther apart. Measurements 

of contaminant concentrations closer to the prediction locations are weighted accordingly 

and have a higher degree of influence on the final predictions than sites located at larger 

distances. Thus, the local influence of each measured point decreases with distance 

(Isaaks and Srivastava, 1989). IDW interpolation is a common method used in 

Geographic Information Systems (GIS) in order to create raster overlays from point data 

(Burrough and McDonnell, 1998). Since it is identified as an exact interpolator, lines can 

be woven across interpolated values creating either vector contour maps or raster shaded 

maps. The term vector refers to the representation of spatial data by points, lines, and 

polygons. The term raster refers to a regular grid of cells covering an area (Burrough and 

McDonnell, 1998). 

 

 Given the appropriate dataset, IDW interpolation can prove to be a powerful 

prediction tool, however, shortcomings do exist with this method. First, IDW must be an 

exact interpolator due to the circumstance that if the value for an interpolated point 

coincides with that of a data point, the unsmoothed value must be replaced (Burrough and 

McDonnell, 1998). Furthermore, the form of the contour map is dependent on how the 
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sampling sites are clustered and the presence of outliers. IDW interpolations often feature 

bulls-eye patterns occurring around sampling locations with values differing significantly 

from their surrounding points (Burrough and McDonnell, 1998). Finally, IDW 

interpolation features no methods for testing the quality of predictions. Therefore, the 

only method for assessment of the accuracy of predictions is by performing additional 

observations (Burrough and McDonnell, 1998). 

 

 The formula necessary to perform IDW interpolation in this analysis is as follows: 

   Z(so) = 


N

i 1

 λi Ζ(si)         (8) 

In this formula, Z(so) represents the unknown value at a location (so); N represents the 

number of measured sample points that surround a prediction location utilized in the 

prediction; λi represents the assigned weights for each measured point used in the 

interpolation. Given the nature of IDW, these weights will decrease with increased 

distance; Ζ(si) represents the observed value at a location (si) (Johnston et al., 2001). 

 

 In order to perform any interpolation, two critical decisions must be made. First, 

the weighting must be assigned. In the Geostatistical Wizard, within the Geostatistical 

Analyst extension of ArcGIS 8.1, this is called the ‘power function.’ Second, the 

neighbourhood must be defined by choosing an appropriate shape and number of 

neighbours. 

 

 To attain the optimal power parameter, a method named ‘cross-validation’ was 

used in order to determine the root-mean-square-prediction error (RMSPE) for the 
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prediction surface. The RMSPE is a statistic that quantifies the error of the prediction 

surface. Given IDW interpolation, as the distance between points increases, the weight 

assigned to the neighbours is reduced by a factor of ‘p’ (Isaaks and Srivastava, 1989). 

Cross-validation is a method in which measured points “are removed and compared to 

the predicted value for the specific location” (Johnston et al., 2001). The RMSPE is a 

summary statistic produced by cross-validation in order to quantify error of the prediction 

surface. The optimal power parameter is one that produces the minimum RMSPE 

statistic. 

 

In determining the optimal search neighbourhood for the analysis, it was 

necessary to consider the possible directional influences on how the data were weighted. 

As discussed in Chapter 2, the majority of sedimentation in Lake Ontario stems from the 

Niagara River. Due to factors including shear stress, buoyant discharge conditions, 

inertia, and Coriolis acceleration, a surface plume is created in an easterly direction.  

Thus, the search neighbourhood was adjusted to an elliptical shape, orienting the major 

axis parallel to the eastern direction of the sedimentation. This is an important process in 

IDW interpolation because locations east of a specific measured point in Lake Ontario 

will be more similar at further distances than points that are perpendicular to the specific 

sedimentation pattern (Johnston et al., 2001). The second step in determining the 

neighbourhood involves defining the number of data points within it that will be used for 

creation of the prediction surface. In this analysis, a maximum of five neighbours, and a 

minimum of one neighbour, was used in each prediction. This particular number of 

neighbours was rendered appropriate given the total number of sampled sites and their 
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dispersion throughout Lake Ontario. Experimental processes testing various 

neighbourhood search areas by means of identifying the most optimal cross-validation 

results, supported the decision for five data locations within each neighbourhood. Five 

data locations within each neighbourhood resulted in the lowest RMSPE results after an 

appropriate model was fit to the semivariogram. In order to include a balanced 

representation of points in all directions, the ellipse was divided into four sectors. Each of 

these sectors included the selection of an equal number of points. Additional reasoning 

for partitioning the elliptical neighbourhood is because the sediment contamination levels 

for Lake Ontario have been collected in a grid pattern. Division of the neighbourhood 

into four sectors reduces the possibility that the five nearest neighbours included in the 

interpolation are located along one transect (Johnston et al., 2001). 

 

3.2.2 Radial Basis Functions (RBF) 

 

 Radial Basis Functions are exact interpolation methods in which a given surface is 

forced through each sample value that is measured in the specific analysis (Johnston et 

al., 2001). The goal of RBF is to fit a line through a group of sampled values, while 

minimizing the overall curvature of the surface (Sutton et al., 1998). The equations for 

this curve fitting have been termed ‘kernel functions’. The Geostatistical Analyst offers 

five kernel functions: thin-plate spline, spline with tension, completely regularized spline, 

multiquadric function, and inverse multiquadric spline. The formula necessary to perform 

RBF interpolation in this analysis is as follows: 
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Z(so) = ∑ωiø( ║si – so ║) + ωn+1       (9) 

         

In this formula, Z(so) represents the unknown value at a location (so), ø is a radial basis 

function, ║si – so ║ is Euclidean distance between the prediction location s0 and each data 

location si and ωi : i = 1,2,….,n+1 are weights to be estimated (Johnston et al., 2001). 

 

 Given that RBF and IDW are exact interpolators (used to predict values that are 

identical to the measured values at sampling locations), they differ from one another in 

that RBF will predict values above the maximum measured value or below the minimum 

measured value in an analysis, whereas IDW will not (Johnston et al., 2001). However, 

similar to IDW interpolation, RBF features no methods for testing the quality of 

predictions. 

 

 An RBF interpolation is typically employed if one is predicting smooth surfaces 

from an abundance of data points (Sutton et al., 1998). RBF interpolation is not an 

appropriate method when “large changes in the surface values occur within a short 

horizontal distance” (Johnston et al., 2001) or when the sample data are prone to error or 

uncertainty. Typically, surfaces such as elevation that vary mildly render good 

interpolation results. This analysis incorporates sediment contamination data that features 

significant changes within short horizontal distances. Thus, RBF may produce inaccurate 

results using this dataset. 
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 In order to create the optimal predicted surface using RBF interpolation, the five 

kernel functions were tested. The optimal kernel function was identified as the 

‘Multiquadric,’ on the basis of the lowest RMSPE value. The identical search 

neighbourhood was utilized for the RBF predictions as was used in IDW interpolation. 

 

3.2.3 Global Polynomial Interpolation (GPI) 

 

 Global Polynomial Interpolation involves fitting a polynomial or mathematical 

function of spatial coordinates of the sample sites, to the observed data at these sites, 

using least square regression (Bailey et al., 1995). Using this technique, the surface being 

fit to the sample sites rarely passes through them, defining GPI as an inexact interpolator 

(Johnston et al., 2001). However, the number of sample sites above the surface medium is 

usually equivalent to the number below it. GPI attempts to create smooth surfaces, which 

mathematically depict trends that vary gradually over the study area. GPI is also used to 

“examine or remove the effects of long-range or global trends,” (Johnston et al., 2001) a 

process called trend surface analysis (Bailey et al., 1995). The data samples in this 

analysis feature a global trend do to the east-west circulation patterns of water in Lake 

Ontario and the eastern sedimentation pattern stemming from the Niagara River. The 

major flaw with GPI is that more complex polynomials (i.e. fourth order or quartic) are 

prone to outliers. The term outliers refers to excessively high and/or low values predicted 

over the study area. These outliers are especially a problem near the edges of a study 

area. In order to predict sediment contamination levels throughout Lake Ontario using 

GPI, it was necessary to define the polynomial function that would produce the lowest 
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RMSPE. The formula necessary to perform GPI interpolation in this analysis is as 

follows: 

 Z(xi , yi) = β0 + β1xi + β2yi + ε(xi , yi)      (10) 

In this formula, Z(xi , yi) represents the datum at location (xi , yi), β# are parameters, and 

ε(xi , yi) is a random error (Johnston et al., 2001). 

 

3.2.4 Local Polynomial Interpolation (LPI) 

 

 Local Polynomial Interpolation involves fitting a succession of polynomial 

functions to specified neighbourhoods over a surface area, rather than fitting a single 

polynomial to an entire surface (Johnston et al., 2001). The Geostatistical Analyst allows 

the user to take advantage of the Searching Neighbourhood dialog box in order to define 

the shape, maximum and minimum number of points to use, along with specifying a 

sector configuration for the given analysis. The reason that these options exist is in order 

to exercise an interpolation method that considers local variation in the sample sites. 

Local Polynomial Interpolation is often applied to case studies in the domain of 

geological sciences because the variables of interest often have a short-range variation 

(Johnston et al., 2001). The most accurate LPI surface is that producing the lowest 

RMSPE. The formula necessary to perform LPI interpolation in this analysis is identical 

to that used in GPI. The difference is that data are used within localized windows, rather 

than the entire data set (Johnston et al., 2001).  
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3.3 Spatial Interpolation: Geostatistical Methods 

  

 In preceding sections, deterministic interpolation methods were detailed by which 

the smoothness of predicted surfaces were created on the basis of mathematical formulas. 

Geostatistical interpolation methods utilize statistical models incorporating 

autocorrelation or statistical relationships among a group of measured points to create 

prediction surfaces (Johnston et al., 2001). To achieve these prediction maps, kriging is 

used.  

 

3.3.1 Regionalized Variable Theory (RVT) and Kriging 

 

 In order to describe kriging as an interpolation technique, it is necessary to outline 

the Regionalized Variable Theory (RVT). Kriging is based on the RVT, which assumes 

that the spatial variation of a variable represented at specific measurement locations is 

statistically homogeneous throughout the defined surface (Buttner et al., 1998). RVT 

functions under the assumption that the spatial variation of a particular variable is 

expressed as the sum of three specific components forming the following equation: 

Z(x) = m(x) + e’(x) + e’’ (11) 

In this equation, the value for the variable Z at the spatial coordinate x is given by the 

sum of: m(x) representing a deterministic function that describes the structural 

component of Z at x, e’(x) representing the regionalized variable described as random, 

but spatially correlated, and e’’, a residual term or spatially correlated random noise 

(Isaaks and Srivastava, 1989). 



48 

 

3.3.2 Ordinary Kriging 

 

The equation used to perform ordinary kriging is: 

Z(s) = u + e(s) (12) 

where Z(s) represents the value for the unknown variable at a spatial location s, u 

represents an unknown constant mean for the data (thus no trend), and e(s) represents the 

random errors (Johnston et al., 2001). When considering the random errors, it is 

important to note that the random process is intrinsically stationary. Intrinsic stationarity 

is defined as “an assumption that the data come from a random process with a constant 

mean, and a semivariogram that only depends on the distance and direction separating 

any two locations” (Johnston et al., 2001). A discussion regarding the semivariogram will 

follow in the next two sections. 

 

 The next step is calculating the predictor, which is the weighted sum of the data, 

featured in the following equation: 

 Z(so) = 


N

i 1

 iZ(si)        (13) 

Where Z(si) is the measured value at the ith location,  i is an unknown weight for the 

measured value at the ith location, (s0) are the coordinates of the prediction location, and 

N represents the number of measured points used in the prediction of a value for an 

unknown location (Johnston et al., 2001). This predictor is similar to IDW interpolation, 

although weighting is dependant on distances from the prediction location, along with the 

semivariogram, and the spatial relationship of measured values surrounding the 

prediction location. 
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 It is necessary to ensure that the prediction is unbiased. When predictions are 

made at numerous locations, some predictions will be greater than the actual values, and 

some will be below the values. On average, the difference between the actual and 

predicted values should be zero. 

 

3.3.3 The Empirical Semivariogram 

 

  It is necessary to create an empirical semivariogram in order to examine the 

structure of the data. A semivariogram is a graph which plots half the difference squared 

between pairs of locations (the averaged semivariogram values) on the y-axis, relative to 

the distance that separates them on the x-axis (Johnston et al., 2001). Averaged values 

can be used due to the assumption of intrinsic stationarity. The ability to plot all pairs in a 

manageable time frame is a difficult task. ArcGIS utilizes a technique in which pairs of 

locations are grouped based on specified ranges of distances and directions. This process 

is referred to as ‘binning,’ by which the average empirical semivariance for all pairs of 

points is recorded. Another binning method (not used by ArcGIS 8.1) is based on 

grouping pairs of locations into radial sectors. The word “empirical” means that a certain 

quantity is dependant on data, observations, or experiment and is not a model. In order to 

calculate the distance between two locations, the formula for Euclidean distance is used: 

dij = 2)(2)( yjyixjxi   (14) 

In order to calculate the empirical semivariance (y-axis), the following formula is 

utilized:   
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Semivariance = 0.5 * average[(value at location I – value at location j)2] 

 (15) 

(Johnston et al., 2001). 

 

3.3.4 Fitting A Model to the Empirical Semivariogram 

 

 Once the average semivariance values are plotted against the average distances of 

the ‘bins,’ it is necessary to fit a model to the empirical semivariogram. Figure 3.1 is a 

semivariogram fit with an exponential model representing SQI scores. 

 

Semivariogram: Exponential Model Fitted to SQI Measurements 

 

 
Figure 3.1 – Exponential Model Fitted to SQI Measurements 

 

Before a model could be fit to the empirical semivariogram, it was necessary to 

determine whether the Lake Ontario sediment contaminants were normally distributed. If 

the distribution was skewed, it would have been necessary to perform the appropriate 
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transformations. A normal distribution is not necessary to obtain prediction maps in the 

ordinary kriging process. However, kriging is the best predictor among unbiased 

predictors when data are normally distributed (Johnston et al., 2001). 

  

 The semivariogram accounts for spatial autocorrelation in the data; however, it 

lacks an explanation for autocorrelation in various directions and does not ensure that 

positive kriging variances will result from the kriging predictions. Thus, it is necessary to 

fit a model in order to determine semivariogram values at different distances. Within the 

Geostatistical Analyst, the following functions exist in order to model the empirical 

semivariogram: circular, spherical, tetraspherical, pentaspherical, exponential, Gaussian, 

rational quadratic, Hole Effect, K-Bessel, J-Bessel, and stable. In this analysis, the 

spherical, exponential, and Gaussian models are used for reasons explained in section 4.3. 

 

 The Spherical model generally depicts decreasing spatial autocorrelation or an 

increase of semivariance. At a specific point in the empirical variogram, the model 

plateaus, no longer displaying autocorrelation. The distance at which the model initially 

levels out is known as the ‘range’. The semivariogram value that the model displays at 

the range is known as the ‘sill’ (Bailey et al., 1995). Finally, ‘the nugget effect’ occurs 

when the chosen model does not cross through the origin, but intercepts the y-axis at 

some value greater than zero. It can be attributed to either measurement error or variation 

when distances are smaller than assigned sampling intervals (Johnston et al., 2001). 
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 The Gaussian model has a parabolic shape near the origin and is used if the 

semivariogram depicts autocorrelation at short distances between data points. This model 

incorporates this shape in order to make use of the closest samples in the prediction 

(Isaaks and Srivastava, 1989). 

 

  The exponential model displays a decrease in spatial autocorrelation with 

distance. An autocorrelation value of zero only occurs at an infinite distance (Johnston et 

al., 2001). In order to calculate the semivariance at a specific distance, the following 

formula is used: 

Semivariance = Slope * Distance (16) 

in which the slope refers to the specific slope of the model used and distance is equal to 

the distance between pairs of locations (Johnston et al., 2001). At this point, it is 

necessary to solve for λ (the weights to assign to the measured values surrounding the 

prediction location) in which the matrix formula for ordinary kriging must be used: 

g = Γ * λ  (17) 

in which Γ represents the ‘gamma matrix’and g represents the g-vector which is applied 

to the unmeasured location that is being predicted (Johnston et al., 2001). The g-vector is 

calculated using the aforementioned ‘semivariance’ equation. The distances to be used in 

this calculation are dependant on the distance from the unmeasured location to the 

measured points defined by the specific search neighbourhood for the interpolation. 

 

 In order to calculate the value at an unknown location, the final step is the 

following equation: 
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Kriging Predictor = Σ ( λi * i) (18) 

where λ represents the weight for each measured value and i represents the measured 

value (Johnston et al., 2001). 

 

3.3.5 Anistrophy: Directional Influence of Autocorrelation 

 

 Anistrophy can be defined as “a property of a spatial process or data where spatial 

dependence or autocorrelation changes with both the distance and the direction between 

two locations” (Johnston et al., 2001). The cause for such directional influences are often 

unidentifiable, therefore it is modeled as random error. Anistropic influences can be 

quantified and accounted for using ArcGIS 8.1 software. 

  

3.3.6 Determining the Search Neighbourhood 

 

 As measured data points become located at greater distances from the prediction 

locations, they become less spatially autocorrelated with one another. The ability to set 

the specific size of the search neighbourhood, and assign the specific number of 

measured locations to be used in making a prediction, allows for the elimination of 

locations that have minimal influence on the overall prediction. Furthermore, a search 

neighbourhood customized to fit the spatial arrangement of a specific dataset increases 

the speed at which predictions can be made because sampling locations that are not 

spatially autocorrelated are excluded from the prediction process. 
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 In this kriging analysis, the same search neighbourhood was used as in the IDW 

interpolation. An elliptical search neighbourhood was chosen to account for the eastern 

sedimentation patterns stemming from the Niagara River. The major and minor axes were 

assigned values of 1 and 0.5 respectively, and the ellipse was divided into four sectors in 

which the maximum number of neighbours was limited to 5 and the minimum was 

limited to 1. This is similar to Buttner et al., (1998) who used ordinary kriging to predict 

the spatial distributions of 12 elements in an acidic mining lake using an isotropic search 

neighbourhood including the ten nearest neighbours from each prediction location. A ten 

neighbour search neighbourhood was appropriate because a total of 47 sampling sites 

were measured within three basins approximately 120 to 140 metres in width and 250 to 

400 metres in length (Buttner et al., 1998). The ratio of sampled sites with respect to the 

surface area of the lake was the reason for a search neighbourhood featuring 10 

neighbours. The shorter distances between sampling locations increased the probability 

of autocorrelation between their contamination concentrations. The ratio between the 

surface area of Lake Ontario and the grid of 70 sampling locations separated by intervals 

of 30 km is the reason the maximum number of neighbours was limited to 5 in this 

analysis. Additional neighbours would surpass the range of the semivariogram, and thus, 

they would lack spatial autocorrelation. 

 

3.3.7 Cross-Validation: Identification of the Best Model 

 

  In order to identify the degree of accuracy that the semivariogram parameters and 

the search neighbourhood possess in predicting the unknown locations, the Geostatistical 
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Analyst can be used to perform cross-validation. Cross-validation is a method that 

removes each measured location one at a time in order to predict their values on the basis 

of the measured values in the entire dataset. On the basis of cross-validation results, 

accuracy can be determined regarding the chosen model and search neighbourhood for 

each prediction. This method was used to quantify the uncertainty of 2,3,7,8-

tetrachlorodibenzo-p-dioxin concentrations in the Passaic River in New Jersey, after an 

indicator kriging interpolation was performed (Barabas et al., 2001). This study is 

significant because the cross-validation process provided sufficient indication regarding 

the accuracy of the prediction surface produced. 

 

  In order to visualize these results, the Geostatistical Analyst offers a scatter plot 

of predicted values against measurement values, an error plot in which true values are 

subtracted from the predicted values, and a standard error plot in which the measurement 

values are subtracted from the predicted values and divided by the estimated kriging 

standard errors. These three plots, which depict how well the kriging process is predicting 

at unknown locations, are featured as Figures 3.2 through 3.4. For example, Figure 3.2 

representing predicted vs. measured values, shows a blue line (best fit) of the predicted 

values superimposed over the measured values (red dots). The black dashed line 

represents the 1:1 line. Measured values are not scattered around this line because kriging 

tends to under-predict large values and over-predict small values (Johnston et al., 2001). 
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Predicted Vs. Measured Values 

Figure 3.2 – Predicted (blue line) Vs. Measured (red dots) Values 

 

Figure 3.3 is similar to Figure 3.2, however true values are subtracted from predicted 

values in order to show the error generated from the interpolation. 

 

 

Error Plot 

 

 
Figure 3.3 – Error Plot 

 

 

In Figure 3.4, the predictions are assessed relative to whether they are centred on the 

measurement locations. It is apparent that this prediction pertaining to SQI scores 

throughout Lake Ontario is relatively unbiased. 
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Standard Error Plot 

 

 
Figure 3.4 – Standard Error Plot 

 

 

A fourth plot identified as Figure 3.5 below, illustrates the difference between the 

predicted and measured values divided by the estimated kriging standard errors and the 

corresponding quantiles from a standard normal distribution (Johnston et al., 2001). This 

plot indicates a relatively normal distribution because the measured values stray 

minimally from the 1:1 line. 

‘QQ’ Plot 

 

 
Figure 3.5 – ‘QQ’ Plot 

 

 Cross-validation also provides values including Mean Prediction Error (MPE), 

Standardized Mean Prediction Error (SMPE), Root-Mean Squared Prediction Error 

(RMSPE), Average Standard Error (ASE) and Standardized Root-Mean-Squared 

Prediction Errors (SRMSPE), which assess the accuracy of the chosen model. A good 
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model will calculate MPE and SMPE values near a value of zero to show that predictions 

are unbiased or are centred on the measured locations. Additionally, low RMSPE values 

identify that predictions are close to their true values. The ASE values are used to assess 

the variability in the predictions from the measurement values. Therefore, the average 

standard error must be similar to the root-mean square prediction error in order to 

correctly assess the variability in the prediction. For instance, if the ASE value is greater 

than the RMSPE value, the variability of the prediction is being overestimated. The 

SRMSPE value also provides another method to assess variability. If the prediction 

standard errors are valid, the SRMSPE values should be close to 1 (Johnston et al., 2001). 

However, standardized RMSPE values greater than 1 translate to an underestimation in 

the variability of the predictions.  
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Chapter 4: Results and Discussion 

 

This chapter first examines whether the Sediment Quality Index is a satisfactory 

measure for areas within Lake Ontario where sediment quality is frequently threatened or 

impaired. This assessment is performed in relation to the critical pollutants exceeding 

federal guidelines at the sampled sites. Second, deterministic interpolation methods 

including IDW, RBF, GPI, and LPI are assessed relative to the ordinary kriging model. 

Third, an assessment of existing kriging models including ordinary, simple, universal, 

indicator, co-kriging, and probability kriging is conducted. Finally, the best interpolation 

model is used for predicting the spatial distribution of 32 individual contaminants within 

Lake Ontario.  

 

4.1 Sediment Quality Index as a General Indicator of Sediment Contamination 

 

 In order to determine whether the SQI is a satisfactory measure for determining 

the areas in aquatic ecosystems where sediment quality is frequently threatened or 

impaired, the critical pollutants including PCBs, DDT and its metabolites, Mirex, dioxins 

and furans, mercury, and Dieldrin were assessed relative to the SQI scores. Figure 4.1 

displays four measured locations throughout Lake Ontario that are classed are classified 

as marginal with SQI values ranging from 45 - 59. Since critical pollutants are of highest 

concern because of their negative impacts on Lake Ontario as an aquatic ecosystem, the 

locations labelled as frequently threatened or impaired based on low SQI values should 

indicate the presence of the critical pollutants at high concentrations (near or above the  
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Probable Effect Level). Table 4.1 indicates the relationship between low SQI scores and 

high concentrations of critical pollutants. The reason Mirex was not included in this table 

is because values of ‘0’ were measured at all sites for this contaminant. Measurement 

error must account for these 0 ng/g values for two reasons: (1) Mirex is identified as a 

Critical Pollutant in the Lake Ontario Basin and (2) Concentrations of Mirex in sediment 

are typically minute, therefore, traces of the pollutant may not have been identified.  

 

Table 4.1: SQI and Critical Pollutants 

Critical Pollutant Threshold 

Effect 

Level  

Probable 

Effect 

Level 

Station 22 

 

Station 33 

 

Station 40 

 

Station 69 

PCBs 34.1 ng/g 277 ng/g 177 ng/g 208 ng/g 232 ng/g 167 ng/g 

DDT 1.19 ng/g 4.77 

ng/g 
19.58 

ng/g 

10.28 

ng/g 

15.08 

ng/g 

1.88 ng/g 

Dioxins/Furans 0.85 ng/g 21.5 

ng/g 

0 ng/g 244.5 

ng/g 

243.6 

ng/g 

0 ng/g 

Mercury 0.17 ug/g 0.486 

ug/g 
1.38 ug/g 1.00 ug/g 0.78 ug/g 0.51 ug/g 

Dieldrin 2.85 ng/g 6.67 

ng/g 

2.27 ng/g 2.35 ng/g 2.93 ng/g 1.17 ng/g 

Total Pollutants 

Exceeding PEL 

  13 15 14 17 

 

 

Given this analysis, it is evident that the SQI considers two factors in the 

categorization of sediment quality: (1) the total number of contaminants exceeding the 

TEL and the PEL; and (2) the amount by which each threshold is exceeded. For example, 

the results for Station 33 display three critical pollutants greatly exceeding the PEL 

(highlighted in bold font), and one greatly exceeding the TEL. Additionally, a total 15 of 

the 32 contaminants were measured as exceeding the PEL, thus creating a low SQI score. 

In comparison, Station 69 features one critical pollutant exceeding the PEL, however a 
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total of 17 contaminants were found to exceed this measure at the location. On the basis 

of these results, the SQI can be considered a satisfactory measure of sediment 

contamination in Lake Ontario. 

  

 With the exception of Hamilton Harbour, the sampling locations where sediment 

quality is frequently threatened or impaired are located within the deep lake basins. The 

explanation for the location of high sediment contamination levels in these areas is 

described in the following process. First, the major factor contributing to the loading of 

pollutants into Lake Ontario is surface runoff. The clearing of original forested areas for 

agricultural purposes and logging, results in less soil stability and erosion/runoff into 

Lake Ontario and its tributaries (GLA, 1995). These processes increase the transport of 

soil particles and pollutants as suspended soil particulates in water, and the sediment is 

deposited to near-shore areas or near the mouths of tributaries (GLA, 1995). Once 

deposited, contaminated particles may become buried in deep sediment below a 10 cm 

depth. Particles buried at this depth are often considered to be lost to the aquatic system 

(Zarull et al., 1999). 

 

Two processes exist that have the capacity to reintroduce contaminated sediment 

back into the water column. Bioturbation is the first process that results from the activity 

of benthic invertebrates in which sediment can be recycled from as deep as 40 cm from 

the active surface layer (Zarull et al., 1999). The second process is the resuspension of 

sediment as a result of major storm events, internal waves, currents, and vessel traffic 

(Zarull et al., 1999). Such external forces are causes for high flow events, which have 
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been observed to cause significant mass loadings of contaminants from a river into a lake 

(Cardenas and Lick, 1996 in Zarull et al., 1999). As expressed in section 4.2.3, the 

sediment originating in near shore areas can eventually accumulate in the deep water 

basins. Furthermore, the sediment plume developed at the mouth of the Niagara River 

leads directly to areas with high estimated sediment contamination levels. 

 

4.2 Deterministic Methods 

 

 Having determined the SQI to be a satisfactory measure for sediment 

contamination, deterministic interpolation models including IDW, RBF, GPI, and LPI 

were assessed using the data from the sampling locations. The RMSPE values 

documented in Table 4.2 assess optimal functionality for each of the four methods. The 

optimal prediction surface created using each method is identified by the lowest RMSPE 

value generated using each specific function.  

 

Table 4.2: Results for Deterministic Methods of Spatial Interpolation 

 

Deterministic 

Method 

Power Kernel 

Function 

Mean Root-Mean-

Squared-

Error 

Inverse Distance 

Weighting 

2nd N/A -1.63 13.22 

Radial Basis 

Function 

N/A Multiquadric -0.5637 12.22 

Global Polynomial 

Interpolation 

1st N/A 0.02772 13.81 

Local Polynomial 

Interpolation 

2nd N/A -0.8688 12.99 
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Figures 4.2 to 4.5 represent the four deterministic interpolation maps including IDW, 

RBF, GPI, and LPI. 

 

4.2.1 Inverse Distance Weighting 

 

Utilizing IDW interpolation, cross-validation was used in order to attain the 

optimal power parameter and thus, to determine the lowest RMSPE for the prediction 

surface. As a result, the lowest RMSPE value was recorded applying the second power 

function and rendering a RMSPE of 13.22.  

 

Given that IDW interpolation contours depend on the clustering of the sampling 

sites, bulls-eye patterns were created around locations featuring values differing from 

their surrounding points (Figure 4.2). These patterns prevent the possibility of making 

accurate predictions in between measured sites of sediment contamination because IDW 

does not account for the spatial autocorrelation of the surrounding points. 

 

4.2.2 Radial Basis Functions 

 

Radial Basis Functions use cross-validation for identification of the optimal 

kernel function in order to create a contour map. Given the SQI scores, the most optimal 

kernel function was identified as the ‘Multiquadric,’ on the basis of an RMSPE value of 

12.22. 
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The RBF prediction surface is shown in Figure 4.3. It is obvious that RBF are exact 

interpolation methods in which the SQI prediction surface was created by forcing contour 

lines through many sample values that were measured throughout Lake Ontario. Being an 

exact interpolator, the goal of RBF is to fit a line through a group of sampled values, 

while minimizing the overall curvature of the surface. Given the smooth nature of this 

interpolation model and the spatial differentiation of contamination concentrations over 

short horizontal distances, RBF was not identified as the most optimal prediction method.  

 

4.2.3 Global Polynomial Interpolation (GPI) 

 

Global Polynomial Interpolation is an inexact interpolation method that uses 

mathematical functions of spatial coordinates of sample sites in order to create prediction 

surfaces. In this analysis, a linear surface or first-order polynomial produced a predicted 

surface with the lowest RMSPE value calculated as 13.81. Since GPI attempts to account 

for global trends, the interpolated surface provides minimal variation in the concentration 

of sediment contamination. 

 

Although the first-order polynomial produced the surface featuring the lowest 

RMSPE, performing GPI using the SQI dataset is not optimal for prediction of sediment 

contamination in Lake Ontario. This statement is supported by the lack of predicted SQI 

score variation featured in Figure 4.4. Minimal variation in the prediction surface is a 

result of GPIs inability to account for significant differences in contaminant 

concentrations over short horizontal distances. Specifically, this lack of variation exists 
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within the main sedimentary basin including the Niagara, Mississauga, and Rochester 

sub-basins. Within these sub-basins the range of SQI scores is predicted between 75 – 90, 

however, a large majority of measured values in these areas feature SQI scores below 75. 

Thus, GPI is not the optimal model to predict sediment contamination throughout Lake 

Ontario because it creates slowly varying surfaces in order to account for some global 

trend (eg. sedimentation with an eastern heading). 

 

4.2.4 Local Polynomial Interpolation (LPI) 

 

 Given the domain of this analysis, short-range variations in SQI scores exist, 

making LPI an appropriate method for generating prediction surfaces. Rather than fitting 

a single polynomial to an entire area, LPI fits various polynomial functions to defined 

neighbourhoods over a surface area. In this analysis, a quadratic surface or second-order 

polynomial produced a predicted surface (Figure 4.5) with the lowest RMSPE value 

calculated as 12.99.  

 

 The resultant surface generated by the LPI model is more reasonable than that 

produced using GPI. The main reason is because it displays appropriate variation in SQI 

scores in the main sedimentary basin of Lake Ontario. Given this interpolation surface, 

SQI values ranging from 60 - 85 were featured in Lake Ontario’s main sedimentary 

basin, in which the variations account for significant differences in contaminant 

concentrations over short horizontal distances given the existing measured values that the 

predictions were based on. However, the northern extent of Lake Ontario is featured with 
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SQI values ranging from 95 - 100. Given that the Toronto Harbourfront is a Lake Ontario 

AOC, high SQI values along the northern shoreline appear to be too high. This is 

probably a result of two factors; the first due to the limitations of LPI as a prediction 

model; and the second related to the low number of measured sampling locations in the 

northern shoreline areas. For example, a sediment contamination measurement location at 

the Toronto Harbourfront AOC would have influenced the prediction along the northern 

shoreline of Lake Ontario. AOCs generally feature lower SQI scores, and thus, lower 

scores would be predicted if the measurements were taken at such locations. Although 

LPI produced a reasonable prediction surface for Lake Ontario, it was not utilized due to 

the limitations in determining the accuracy of the predictions through cross validation 

results measuring the bias and variability in its production. 

 

4.3 Geostatistical Methods 

 

Geostatistical interpolation models including ordinary, simple, universal, 

indicator, co-kriging and probability kriging were outlined and assessed for predicting 

sediment contamination levels in Lake Ontario. Ordinary kriging was chosen as the best 

model for prediction. Table 4.3 represents the semivariogram models and search 

neighbourhoods applied for the prediction of each contaminants distribution. 

 

The process of semivariogram modelling is necessary because the semivariogram 

only provides information describing the spatial autocorrelation of datasets. It is 
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Table 4.3: Lake Ontario Sediment Contaminants: Semivariogram Models and 

Neighbourhood Search Size 

 

Contaminant Semivariogram Model Neighbourhood Search Size 

(# of neighbours) 

Sediment Quality Index 

(SQI) 

Exponential 5 

Arsenic Spherical 5 

Cadmium Exponential 5 

Chromium Spherical 5 

Copper Exponential 5 

Lead Gaussian 5 

Nickel Gaussian 5 

Zinc Exponential 5 

Mercury Gaussian 5 

Alpha-HCH or BHC Gaussian 5 

Hexachlorobenzene (HCB) Exponential 5 

Beta-HCH (Lindane) Exponential 5 

Heptachlor Epoxide Exponential 5 

Alpha-Chlordane Exponential 5 

Dieldrin Exponential 5 

pp’ – DDE Gaussian 5 

Endrin Exponential 5 

pp’ – DDD Exponential 5 

op’ - + pp’ DDT Exponential 5 

Mirex   

Polychlorinated biphenyls 

(PCBs) 

Exponential 5 

Dioxins and Furans Spherical 5 

Phenanthrene Spherical 5 

Anthracene Spherical 5 

Fluoranthene Exponential 5 

Pyrene Spherical 5 

Benzo[a]anthracene Spherical 5 

Chrysene Spherical 5 

Benzo[b/k]fluoranthene Spherical 5 

Benzo[a]pyrene Spherical 5 

Indeno[1,2,3.cd]pyrene Exponential 5 

Dibenzo[a,h]anthracene Exponential 5 

Benzo[g,h I]perylene Exponential 5 

Total PAHs Exponential 5 
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necessary to fit a semivariogram model in order to provide information for all possible 

directions and distances, and to ensure that kriging predictions have positive kriging 

variances (Johnston et al., 2001). 

 

 The three models utilized in this analysis are identified as the spherical, 

exponential, and gaussian models. The prediction of unknown values is most 

significantly influenced when the shape of the curve near the origin differs. For instance, 

the Gaussian model is used if the semivariogram depicts autocorrelation at short distances 

between data points, given its parabolic shape near the origin. The Gaussian model 

incorporates this shape in order to make use of the closest samples in the prediction 

(Isaaks and Srivastava, 1989). However, the parabolic shape often causes a screening 

effect in which one data sample falls in between another sample and the point being 

estimated. In such an instance, negative weights can be produced (Isaaks and Srivastava, 

1989). If a particularly high sample value is associated with a negative weight, there is a 

high possibility of a negative estimate. This explains why the Spherical and Exponential 

models were applied more readily in this analysis than the Gaussian model. These models 

are more linear in nature and as a result, they produce fewer negative weights. Earth 

science analyses such as pollutant concentrations should never produce negative 

estimation values because the lowest amount measurable is a value of 0 (Isaaks and 

Srivastava, 1989). 
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4.3.1 Cross-Validation Results for Ordinary Kriging  

 

As outlined in section 3.3.7, the cross-validation procedure provides measures of 

accuracy for the predictions made using the ordinary kriging method. The measures 

produced include MPE, SMPE, RMSPE, ASE and SRMSPE. Values calculated for these 

measures are documented in Table 4.4, where ordinary kriging is assessed as a predictor 

of sediment contamination for 32 different contaminants. 

 

Given each specific contaminant, results are most variable when considering 

RMSPE values and when comparing RMSPE values with ASEs. Before the interpolated 

surfaces can be assessed, it is necessary to document possible explanations for 

inaccuracies that occurred in the kriging process.  

 

4.3.2 Limitations of the data 

 

The main reason kriging is a valuable asset in the domain of environmental 

science is because the process of collecting and analyzing samples of many types is both 

a tedious and an expensive task. Due to budget and time restraints in research programs, 

data collected for entities such as Lake Ontario are often limited. In this analysis, kriging 

offers the possibility for predicting sediment contamination throughout Lake Ontario on 

the basis of 70 sampling sites. A large percentage of the results (rendered by kriging the 

32 contaminants in this analysis) were positive. Negative results featuring high RMSPE 

scores may have been calculated due to an inappropriate number of measured sampling 
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locations. In the previously mentioned kriging analysis in Germany, it was concluded that 

47 sampling sites were not sufficient to reduce the spatial variance distributions to 

acceptable values in order to make accurate predictions (Buttner et al., 1998). As stated in 

section 3.3.6, 47 sampling sites were measured over a relatively small area, compared to 

70 sites throughout Lake Ontario, which has a large surface area. However, knowledge of 

the sedimentation and current circulation patterns in Lake Ontario was useful in 

estimating the sediment dispersal within the system. 

 

  As displayed in Figure 1.3, the sampling locations are not evenly dispersed 

throughout the lake. The region for highest concern of inaccurate predictions is obviously 

the entire northern shoreline of Lake Ontario. Unlike the southern shoreline, no data were 

generated from sampling locations in close proximity to the northern shoreline.  

  

 With the exception of the Niagara River and Hamilton Harbour, sediment samples 

were not analyzed at other Areas of Concern (AOC) such as the Toronto Harbourfront or 

major contaminating rivers flowing into Lake Ontario along the northern shoreline. 

Instead, high SQI scores were predicted in these regions based on similar scores from 

measured sites located within their neighbourhood search areas. These results are 

inaccurate because AOCs possess high sediment contamination levels, and thus, low SQI 

values. Sediment quality predictions made in the south-western extent of the lake are 

generally more accurate because two samples were taken in Hamilton Harbour and one at 

the mouth of the Niagara River. Due to the abundance of inflow from the Niagara River, 
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a sampling location at its mouth represents sediment contamination in the region more 

thoroughly.  

  

 Finally, using ordinary kriging produces portions of Lake Ontario’s area as 

featuring no data. Initially, a rectangular prediction surface approximately covered the 

entire area of Lake Ontario. Areas located along the south-west and north-east edges of 

Lake Ontario feature no data due to limitations in the extent of sampling site locations. 

 

4.3.3 Sediment Quality Index (SQI) 

 

 In Figure 4.6, SQI categories are overlaid on top of the SQI contamination score 

prediction surface. SQI categories range from points that display Marginal (red) to 

Excellent (green) sediment quality. Furthermore, brown to yellow colour intervals 

represent predictions of low to high SQI scores respectively. When analyzing cross-

validation results, it is important to concentrate on the negative aspects including the 

worst errors, areas consistently displaying bias, or areas that have been misclassified 

(Isaaks and Srivastava, 1989). It is also important to note that successful cross-validation 

results do not necessarily guarantee an accurate prediction surface. However, poor results 

are good indicators of inaccuracies in predicted surfaces (Isaaks and Srivastava, 1989). 

Figure 4.6 displays the lowest SQI scores in the region of Hamilton Harbour and central 

regions of the Niagara, Mississauga, and Rochester basins. Highest SQI values are 

estimated along the northern shoreline of Lake Ontario. However, they may be inaccurate  
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given the lack of measured sampling locations in this area. Furthermore, in Lake Ontario, 

sediment from near shore areas eventually accumulates in the deep lake basins or moves 

through the St. Lawrence River to the Atlantic Ocean (Allan, 1984; Sorokin, 1966; 

Karickhoff and Morris, 1995 in Zarull et al., 1999). Therefore, it was necessary to sample 

the sediment in the deep basins where this contaminated material is known to migrate. 

  

 The cross-validation results derived from the SQI score interpolation results 

document the RMSPE, ASE, SMPE and SRMSPE as 13.14, 13.68, -0.03784, and 0.9635 

respectively. Thus, the predictions are unbiased and reasonably close to the measured 

locations. The variability assessed by the deviations of the ASE from the RMSPE and the 

SRMSPE from the value 1, is slightly overestimated. Through examination of the cross-

validation results and the predicted surface, ordinary kriging proved to be an appropriate 

method for predicting sediment contamination utilizing the SQI scores. 

 

On the basis of the RMSPE produced for deterministic methods and the ordinary 

kriging model, results were similar ranging from 12.22 to13.81. Kriging was determined 

the most appropriate interpolation method tested because unlike deterministic models, it 

quantifies spatial autocorrelation in order to weight the spatial arrangement of measured 

points (Johnston et al., 2001). Additional reasons include the following: 

(1) kriging accounts for both the clustering of nearby samples and their 

distance from the estimation points; 

(2) values and plots assessing the accuracy of the predictions are 

calculated in the cross-validation process; 

(3) multiple kriging models exist, and can be used depending on the 

desired output surfaces and the nature of the data set. 
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In Figure 4.6, ordinary kriging results (using SQI scores) show higher contamination 

levels in the deep lake basins. Kriging accounted for this sedimentation process where 

low SQI scores are situated within the deepest extent of each basin, and in close 

proximity to Lake Ontario AOCs. Interpretation of the five contour surfaces (Figure 4.7) 

relative to the distribution of depth and inflow throughout Lake Ontario supports the 

kriging model as an improvement over the alternative deterministic methods. Given the 

general water circulation patterns and inflows from rivers and tributaries, sediment has 

the capacity to be re-suspended, and deposited in deeper extents of the Lake Ontario 

basin. Deterministic methods did not account for the depositional processes in this 

aquatic system as accurately. 

 

  Following the assessment of existing kriging models in ArcGIS 8.1, ‘ordinary 

kriging’ was selected as the most appropriate kriging method in order to predict sediment 

contamination levels at unknown locations throughout Lake Ontario. 

The reasons for this decision include: 

(1) There is no reason to reject the assumption of an ‘unknown’ constant mean; 

(2) The data plotted in the semivariogram appeared to have a spatial trend. Thus, 

ordinary kriging could be applied to this analysis because prediction weights 

could be derived from a fitted variogram model; 

(3) Simple kriging was not reasonable because the assumption of a ‘known’ constant 

mean u, was not possible given the dataset. Furthermore, the assumption of 

second-order stationarity was not possible given the physical nature of the data; 

(4) Universal Kriging is similar to ordinary kriging, however, a deterministic trend 

replaces the unknown constant mean. This model could not be applied because 

the assumption of an unknown mean u rendered more optimal results in the cross-

validation process than assigning a deterministic trend; 
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Deterministic Interpolation Vs. Kriging  

 

 

 

 

 

 

 

 

 

 

 

Image(s)/Figure not available. 
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(5) Indicator kriging produces interpolation maps displaying the probability that a 

specific variable is in a defined class indicated by a binary number. The interest 

of this analysis is predicting contaminant levels throughout Lake Ontario. 

Therefore, indicator kriging would not render the desired results; 

(6) Cokriging could not produce improved results, because its purpose is to aid 

spatial interpolation when utilizing incomplete datasets. This analysis was 

performed using a complete dataset for 32 contaminants residing in Lake Ontario 

sediment; 

(7) Probability kriging is a compilation of both indicator and co-kriging. Rejection of 

these methods is grounds for utilizing ordinary kriging in this analysis. 

 

 Prediction maps were created using the ordinary kriging method for the 32 

contaminants that were analyzed in the core samples. The intervals defined for the point 

data measurements represent the federal concentration guidelines specific to each 

contaminant. These TELs and PELs for 32 variables are featured in Table 1.2. Prediction 

surfaces are represented in following sections.  

 

 Measured contaminant values are overlaid onto these prediction maps in order to 

assess the estimations surrounding the contamination values. Each contaminant was 

classed based on its contamination level relative to the federal TEL and PEL guidelines. 

Statistics were generated in the cross-validation process including MPE, SMPE, RMSPE, 

ASE, and SRMSPE that validated ordinary kriging as an appropriate interpolation 

method for sediment contamination in Lake Ontario.  

 

 

 



82 

 

Table 4.4: Cross-Validation Results for Ordinary Kriging 

Contaminant Mean Root-

Mean-

Square 

Error 

Average 

Standard 

Error 

Mean 

Standardized  

RMS 

Standardized 

Arsenic -0.03715 12.31 11.25 -0.002141 1.09 

Cadmium 0.151 1.543 1.514 0.09463 1.023 

Chromium 0.8721 20.07 19.95 0.04434 1.0 

Copper 1.938 27.09 28.38 0.05492 0.9448 

Lead 3.091 42.72 42.26 0.07361 1.011 

Nickel 1.098 24.42 22.65 0.03799 1.077 

Zinc 3.998 172.5 148 0.01515 1.159 

Mercury 0.01983 0.3452 0.3584 0.05032 0.9693 

Alpha-HCH or BHC 0.002521 0.1612 0.1607 0.01426 1.009 

Hexachlorobenzene 

(HCB) 

0.4908 14.46 14.65 0.02495 0.9689 

Beta-HCH (Lindane) 0.008849 0.2457 0.2264 0.02652 1.076 

Heptachlor Epoxide 0.00339 0.1296 0.1219 0.02388 1.048 

Alpha-Chlordane 0.03205 0.5431 0.5349 0.04861 1.038 

Dieldrin 0.03634 0.7788 0.776 0.04062 0.9901 

pp’ – DDE 1.379 14.94 14.19 0.09391 1.058 

Endrin 0.01257 0.1746 0.1742 0.06992 1.007 

pp’ – DDD 1.085 12.66 12.97 0.08294 0.9771 

op’ - + pp’ DDT 0.3099 4.488 4.314 0.0706 1.046 

Mirex N/A N/A N/A N/A N/A 

Polychlorinated 

biphenyls (PCBs) 

3.813 65.52 68.1 0.04724 0.9617 

Dioxins and Furans 0.2669 76.71 83.79 0.008826 0.9465 

Phenanthrene 0.965 143.3 108.6 0.004604 1.308 

Anthracene 0.3568 31.26 21.57 0.00676 1.473 

Fluoranthene 11.95 276.8 168.6 0.03379 1.963 

Pyrene 2.052 233.2 160.6 0.003045 1.462 

Benzo[a]anthracene 1.828 149.7 100.7 0.003765 1.519 

Chrysene 1.189 193.5 146.5 0.0002555 1.32 

Benzo[b/k]fluoranthene 4.631 365.9 278.3 -0.0008384 1.34 

Benzo[a]pyrene 1.267 146.9 119.7 0.002388 1.226 

Indeno[1,2,3.cd]pyrene 9.004 172.5 181.8 0.04856 0.9544 

Dibenzo[a,h]anthracene 1.397 31.24 32.34 0.04203 0.9722 

Benzo[g,h I]perylene 7.947 133.9 136.4 0.05662 0.9874 

Total PAHs 54.41 1865 1354 0.01011 1.49 
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4.3.4 Metals 

 

 Displayed as Figures 4.8 through 4.15 respectively, ordinary kriging was used to 

predict metal concentrations for Mercury, Cadmium, Arsenic, Chromium, Lead, Nickel, 

Copper, and Zinc in Lake Ontario. Due to a high RMSPE value, a large deviation 

between the RMSPE and ASE, and a standardized RMSPE that deviated significantly 

from the value 1, an accurate prediction surface could not be produced for Zinc 

concentrations. A biased prediction for Zinc concentrations is displayed with a MPE 

value of 3.998.  

 

Figure 4.8 estimates the locations for the highest Mercury concentrations in the 

deep central regions of both the Mississauga and Rochester sub-basins. Unlike the 

prediction maps produced for the SQI values, federal guideline intervals representing 

measured concentrations either below or exceeding the TEL or PEL are superimposed 

over the contour surfaces in Figures 4.8 through 4.15. Furthermore, the specific 

choropleth schemes ranging from five to nine intervals are applied to all metals. The 

yellow pigment represents the lowest metal concentrations in the sediment and the brown 

represents the highest. The predicted surface for Mercury produced the most reliable 

cross-validation results, followed closely by Cadmium (Figure 4.9). Both results were 

relatively unbiased and rendered low RMSPE values. However, variability in the 

predictions was slightly overestimated for Mercury and underestimated for Cadmium. 

Measured concentrations for the presence of Cadmium exceeding the PEL were fewer  
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than the case for Mercury, however, high contamination concentrations for both elements 

were in similar general locations. 

 

A general trend for the spatial distribution of metals throughout the interpolated 

surfaces in this section is that highest distributions exist in the deep central lake basins 

including the Rochester, Mississauga, and in most instances, the Niagara basin. 

Variations in the distribution of these particles exist due to their physical properties such 

as particle size and atomic weights. The distribution of these elements can be explained 

due to the specific sedimentation and circulation patterns in Lake Ontario.  

 

Figure 4.10 representing Arsenic, produced a similar RMSPE to the prediction 

surface created implementing SQI scores, and its deviation from the ASE was larger, 

resulting in an underestimation of variability in the predictions. The highest 

concentrations of Arsenic were predicted in the south-eastern extent of Lake Ontario (the 

deepest region in the Rochester Basin). High concentrations in this area are also predicted 

in the shallow inshore region of the basin. This suggests that Arsenic loadings stem from 

rivers in this area including the Genesee and the Oswego. Figures 4.11 through 4.14 

represent Chromium, Lead, Nickel, and Copper respectively. Prediction surfaces 

representing Chromium and Lead near perfectly estimated the variability and featured 

standardized RMSPE values of 1.0 and 1.011, however, Lead features an RMSPE value 

of 42.72, more than doubling that of Chromium. With RMSPE values of greater than 20, 

predictions are straying quite far from the measured locations. Therefore, when analyzing 

these prediction surfaces, these errors must be taken into account. On the basis of these 
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predictions, the highest concentrations of Chromium are predicted in the general region 

of Hamilton Harbour. It seems that Chromium loadings stem from industrial processes 

performed in the Hamilton Harbour region and the Niagara River. Additionally, the 

highest concentrations remain in the shallow inshore regions surrounding the Niagara 

basin. As a result, it is possible to hypothesize that the physical properties of Chromium 

inhibit significant lateral movement throughout Lake Ontario. The prediction map 

representing Lead is obviously inaccurate given that the highest predicted concentration 

interval indicates Lead values ranging from 80 to100 ug/g, while measured 

concentrations of Lead were documented at amounts well over 100 ug/g in the central 

regions of Lake Ontario, and approximately 200 ug/g near Hamilton Harbour. The 

highest metal concentrations including Lead stem largely from steel mills and associated 

practices along the shoreline of Hamilton Harbour (Ecowise, 2002). Hamilton Harbour is 

a reservoir for industrial and municipal wastes, including lead laden effluents, and acts as 

a port that receives 400 to 1000 vessels per year (Ecowise, 2002). As a result, these 

contaminants infiltrate the sediment and are deposited in the deep central basin over time. 

However, it is vital to reiterate that prediction results may not be reliable due to 

inaccurate cross-validation values and simple comparison of measured and predicted 

values. 

 

The prediction maps created for Nickel and Copper display high concentrations of 

each element in the central regions of the Niagara and Mississauga sub-basins. Similar to 

the cross-validation results produced for Lead, these prediction surfaces are subject to 

inaccuracies due to high RMSPE values and standardized RMSPE values deviating from 
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1. The interpolation surfaces suggest that major rivers in the Lake Ontario ecosystem 

including the Humber, Don, and Trent on the northern shoreline, and the Niagara, 

Genesee, and Oswego on the southern shoreline are the main sources for these 

contaminants. High contamination levels within the deep regions of the Niagara, 

Mississauga, and Rochester basins support this hypothesis. 

 

4.3.5 Critical Pollutants 

 

 Figures 4.16 to 4.21 represent interpolated surfaces for PCBs, Dioxins and 

Furans, Dieldrin, DDT, DDD, and DDE respectively. Figure 4.16 represents the 

prediction map for Polychlorinated biphenyls. PCBs have been banned from production 

for the past 25 years, but their concentration levels still continue to exceed human health 

standards. This contaminant was measured at high concentrations in the deep regions of 

the Mississauga and Rochester basins. Comparing the measured values to the filled 

contours throughout the basin, the predictions seem reasonable, but, high RMSPE results 

and large deviations from the ASE are the reason to suspect inaccuracies in the kriging 

analysis. A possible explanation for these cross-validation results is a biased prediction 

supported by a MPE value of 3.813. It is due to the severe impacts that PCBs continue to 

make on aquatic ecosystems that the prediction map was included in this analysis despite 

its errors.  
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 The majority of PCB loadings into Lake Ontario originate from the upstream 

Great Lakes basins and the Niagara River basin totalling 440 kg/yr (LOLMP, 1998). The 

Niagara River is the main source for this inflow. The highest concentrations of PCBs in 

sediment are located in the deep central basins of Lake Ontario originating from the 

mouth of the Niagara River. Point and non-point sources, combined with atmospheric 

deposition, contribute approximately 165 kg/yr of PCBs to the lake (LOLMP, 1998). The 

majority of this contaminant enters the lake through tributaries and rivers.  

 

 Figure 4.17 and 4.18 represent prediction maps for Dioxins and Furans and 

Dieldrin. Cross-validation results reported for Dioxins and Furans depict slightly biased 

predictions in which the variability is overestimated. The RMSPE is extremely high 

indicating predictions that are not close to the measured values. Dieldrin was predicted 

successfully, featuring a low RMSPE value, and unbiased predictions in which the 

variability was very slightly overestimated. 

 

 The measurements for the highest concentrations of Dioxins and Furans were 

sampled in the deep region of the Niagara, Mississauga, and Rochester basins. These 

contaminants tend to exist at low levels in the environment. The largest source of these 

contaminants is atmospheric deposition and it accounts for approximately 5 grams per 

year (LOLMP, 1998). The Niagara River is an additional source, along with Oswego 

River on the south-east shore and the Genesee River near Rochester.  Similar to Dioxins 

and Furans, the highest Dieldrin concentrations are predicted in the central regions of the 

main sub-basins. The majority of Dieldrin loadings stem from the Niagara River (and 
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other upstream sources) representing approximately 43 kg/yr that is deposited in the deep 

lake basins over time (LOLMP, 1998). Atmospheric deposition accounts for 

approximately 13 kg/yr.  

 

 The final critical pollutant predicted in this analysis is DDT (Figure 4.19). The 

cross-validation results for DDT showed a relatively unbiased prediction, in which 

predictions were close to the measured locations and variability was assessed reasonably 

well. Highest concentrations were predicted near the urban centre of Oshawa. This 

portion of the Lake Ontario shoreline does however feature many farming communities 

that used DDT as a pesticide in past decades. It is apparent that DDT in sediment has 

reached the deep lake basin due to re-suspension of sediment over time. DDT loadings 

originate from both the upstream Great Lakes (Niagara River) and from sources including 

the Humber and Don Rivers on the northern shoreline, and Eighteen Mile Creek, the 

Genesee, Oswego, and Black Rivers on the southern shoreline (LOLMP, 1998). 

Atmospheric loadings stemming from arable farmland regions near the Trent River also 

account for a small percentage of DDT loading. Figures 4.20 and 4.21 include DDD and 

DDE respectively (which combined form DDT). Cross-validation results for these 

contaminants do not suggest predictions as close to the measured location when 

compared to DDT, however, high concentration results reside in similar zones for each 

contaminant. 
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4.3.6 Polycyclic Aromatic Hydrocarbons (PAHs) 

 

 In total, the sediment contamination levels for eleven different PAHs were 

predicted throughout Lake Ontario. Prediction attempts for ten of the eleven 

contaminants were unsuccessful due to mean prediction errors deviating significantly 

from 0, high RMSPE values, unacceptable deviations of these values from the ASEs, and 

standardized RMSPE values deviating significantly from 1. Figure 4.22 represents 

Anthracene, the sole PAH in which the results rendered were not completely 

unacceptable. The results are comparable to those calculated for Copper, however a 

RMSPE of greater than 30 and a large overestimation in the variability of the prediction, 

makes for an inaccurate prediction surface. The highest concentrations of Anthracene 

were predicted and measured in the region of Hamilton Harbour. It is obvious that 

loadings of this PAH originate from industrial processes occurring along the shores of the 

harbour. Figures 4.23 to 4.32 represent the statistically insignificant prediction surfaces 

created for the remaining PAHs including Phenanthrene, Fluoranthene, Pyrene, 

Benzo[a]anthracene, Chrysene, Benzo[b/k]fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-

cd]pyrene, Dibenzo[a,h]anthracene, and Benzo[g,h,I]perylene respectively. Negative 

prediction results were rendered for the following reasons: 

(1) the MPEs were significantly biased (deviated from the value 0), thus, the 

predictions were not centred on the measurement values; 

(2) high RMSPE values were a result of the cross-validation process showing a large 

deviation of the predictions from their measured values; 
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(3) the variability in the predictions was not assessed correctly 

(4) the distances between sampling locations were inappropriate given the range 

depicted by the semivariogram models chosen in each interpolation. A higher 

sampling density would have led to more accurate predictions because measured 

points would remain within the range of the semivariogram, and thus, show 

spatial autocorrelation. 

 

4.3.7 The Remaining Contaminants 

 

 Figure 4.33 and 4.34 represent Alpha-HCH or BHC and Endrin. Both cross-

validation results reported low RMSPE scores and almost perfect variability. Similarly, 

Figures 4.35 through 4.37 representing Lindane, Heptachlor Epoxide and Alpha-

Chlordane respectively, featured predictions close to measured locations, however, the 

variability of prediction was underestimated slightly in all three cases. Figures 4.33 

through 4.37 are fine examples of statistically accurate results using ordinary kriging. 

Furthermore, with the exception of Figure 4.35 (Lindane), all contamination 

measurements were recorded and predicted below the TEL. Figure 4.38, representing 

Hexachlorobenzene produced similar results to the implementation of the SQI with 

geostatistical interpolation. 

 

 Similar to the metals in section 4.3.4, reports documenting the origin of pollutant 

loadings for the contaminants in this section are minimal. Due to low concentration levels 

of these variables in Lake Ontario sediment, it is difficult to hypothesize their origins. 
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4.4 Sampling Strategies 

 

 As displayed in Figure 3.1, an exponential model is fit to SQI measurement 

values in a semivariogram. In this example, the range is a distance of approximately 3.2, 

beyond which autocorrelation does not exist. In order to produce the best results given 

the limitations of the dataset, data sampling locations over the surface of Lake Ontario 

must be within this range. A distance conversion could not be made from the 

semivariogram value, into its physical distance on the surface of the earth due to 

limitations of the ArcGIS software.  

 

In order to optimize predictions, it will be necessary to take sediment 

contamination samples at all Lake Ontario AOCs and major tributaries providing inflow 

into the system. These entities may include the Don and Humber Rivers near the urban 

centre of Toronto, and Eighteen Mile Creek located near the Niagara River. Finally, it is 

important that sampling locations are situated within the range of the semivariogram, to 

ensure autocorrelation between sites of sediment contamination. However, the grid 

pattern featured in this analysis did not produce the optimal prediction results. Improved 

results would be produced if the sampling locations were more spatially stratified. Spatial 

stratification is the opposite of a random pattern, in that there is some bias imposed on 

how a particular sampling scheme is chosen. Improved results would be produced in this 

analysis if the sampling scheme was stratified in intervals no larger than the range 

produced in the semivariogram for the particular contaminant of interest. 
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Chapter 5: Summary and Conclusions 

 

 The measurement of sediment contamination throughout Lake Ontario is an 

immense task if one is to make thorough observations about the aquatic ecosystem as a 

whole. In performing the assessment to determine the SQI’s legitimacy as a satisfactory 

measure for identifying areas in Lake Ontario where sediment quality is frequently 

threatened or impaired, the spatial distribution of the critical pollutants was documented. 

In addition, the total number of contaminants at each measurement location exceeding the 

TEL and the PEL was determined together with the amount by which each threshold was 

exceeded. The SQI was found to be a good general measure for frequently threatened or 

impaired sediment after performing the calculation of the SQI at each of the 70 

measurement locations and reviewing the results. Supporting this conclusion were 

sampling locations featuring high numbers of contaminants exceeding the PEL and 

TEL’s. In other frequently threatened or impaired sediment samples, the amount by 

which each threshold was exceeded was extremely high. 

 

 Once conclusions were made regarding the SQI as a satisfactory measure for 

frequently threatened or impaired sediment in Lake Ontario, the spatial distribution of 

SQI values was analyzed. Limitations in the spatial distribution of the sediment 

contaminant data prevented the prediction of an accurate SQI score distribution without 

implementation of deterministic and/or geostatistical interpolation methods. Estimations 

of this distribution were performed using deterministic methods including Inverse 

Distance Weighting Interpolation, Radial Basis Functions, and Global Polynomial 
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Interpolation, and Local Polynomial Interpolation. A geostatistical method referred to as 

ordinary kriging was also assessed relative to these deterministic methods, in order to 

identify the optimal interpolation technique for this analysis. Cross-validation was 

utilized to perform this assessment by producing a root-mean-square prediction error for 

each of the five prediction methods, in which the lowest values represented predicted 

locations situated reasonably close to the measured location. Although the RMSPE values 

were similar for the methods, kriging was identified as the best prediction model because 

it uses statistical models that incorporate autocorrelation among the group of measured 

points to create a prediction surface. Also, cross-validation results including MPE, ASE, 

SMPE, and SRMSPE are produced exclusively in the kriging process. These results 

include measures relating to the level of bias in a prediction and estimations of variability 

in the production of interpolated surfaces. While deterministic interpolation models 

created reasonable prediction surfaces (with the exception of GPI), the models relied on 

linear functions rather than semivariogram modeling that offers the ability to customize 

the analysis to the nature of the data.  

  

 An assessment of existing kriging methods within the ArcGIS software and 

identification of the optimal method to be used given the nature of this specific case study 

was the next step. Ordinary kriging was chosen as the optimal method for reasons 

regarding its functionality for the specific analysis. The ordinary kriging process 

produced 20 acceptable prediction surfaces for a possible 32 contaminants.  
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 After assessing the cross-validation results for the spatial distribution of metals in 

this analysis, the most statistically optimal prediction surfaces were created for mercury 

and cadmium, and adequate results were rendered for the remaining metals. Zinc was 

excluded from the results for the reason of poor cross-validation results documented 

previously. The results calculated for the critical pollutants were variable, with the most 

accurate values representing Dieldrin. The most inaccurate results were calculated for 

PCBs. 

 

 The group of eleven PAHs produced the most statistically inaccurate results, 

featuring biased results in the form of mean prediction errors deviating from the value 

zero, high RMSPEs, large deviations of these values from their corresponding ASEs, and 

deviations of standardized RMSPEs from the value 1. Anthracene is one PAH for which 

an acceptable prediction surface was produced. In comparison, the group of variables 

referred to as the ‘remaining contaminants’ produced statistically significant cross-

validation results. Alpha-HCH or BHC and Endrin produced the most accurate prediction 

surfaces, whereas, Hexachlorobenzene produced similar results to the implementation of 

the SQI scores utilizing the ordinary kriging method. 

 

  Before the kriging estimates could be discussed, it was necessary to identify the 

limitations of the dataset that created inaccurate results in the resulting surfaces. The 

main limitation of the data was the insufficient spatial distribution of measured sampling 

locations along the northern shoreline of Lake Ontario. A more sufficient spatial 

distribution of sampling locations along the shoreline would have created more accurate 
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prediction values in the northern region of Lake Ontario. For example, samples measured 

at Lake Ontario Areas of Concern such as the Toronto Harbourfront would have added to 

the accuracy of the predictions, and displayed higher sediment contamination levels in 

the northern shoreline areas. However, sediment dispersal in the Toronto region is 

dependant on factors such as the W/SW direction of the offshore current in this area. 

 

 In the future, more resources should be expended to develop a sampling scheme 

that will account for the proper range in which autocorrelation exists between sampling 

sites. As described in section 4.4, the development of a specific stratification scheme 

could be based on the calculated range in the semivariogram process. If sampling 

locations follow this defined stratification process, a more statistically accurate prediction 

surface can be created. It is vital to note that the semivariogram distribution will change 

for each contaminant. Thus, the ranges produced for each contaminant will not be 

identical. Before creating a sampling strategy, it is necessary to decide which 

contaminant distribution is most important to the organization in order to produce the 

best possible interpolation results. In this analysis, it is equally important to take samples 

at Lake Ontario AOCs and other rivers and tributaries that are sources of contamination 

loading into Lake Ontario.   
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