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Many of the traditional measures of the degree to which crime patterns change
over space and time have limitations. In particular most are unable to determine
any change in spatial crime pattern within an areal unit. Usually studies measure
the change in crime levels in contiguous areas (expressed as discrete sub-divisions
of a study area), but this can become problematic due to difficulties such as the
Modifiable Areal Unit Problem (MAUP). This paper describes a technique
developed to allow researchers to examine intra-study region changes in crime
patterns between two time periods without the need to aggregate crime counts to
within-city areal boundaries. The method presented uses a random point nearest
neighbor test combined with a Monte Carlo simulation. The process resolves
problems of patterning and the MAUP that are common with a number of spatial
displacement and pattern movement studies. This technique is demonstrated with
example data from a city-wide police burglary crackdown in the Australian
capital.

KEYWORDS: displacement; police crackdown; nearest neighbor; MAUP; point
pattern change; Australia.

1. INTRODUCTION

There are many reasons why a researcher might be interested in
detecting changes in the spatial distribution of crime patterns. These can
include; early identification of changing criminal behavior, changing risk
and opportunity structures caused by socio-economic development, dis-
placement or diffusion of benefits resulting from a crime prevention strat-
egy, and non-spatial displacement caused by changing modus operandi or
criminal career adaptations.

In particular, the evaluation of crime prevention strategies has been an
important feature of the burgeoning literature on ‘‘what works’’ in crime
prevention (Sherman et al., 1998). It is not sufficient to be able to say that an
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initiative was successful in reducing crime: it must also have not precipitated
any significant amount of displacement to other crime types, places or
modus operandi. Being able to monitor any spatial changes in criminal
behavior may also tell the researcher if the initiative has been applied evenly
across the target area, if any diffusion of benefits has spread evenly or only
sporadically, or (in the absence of a successful intervention) if external
factors have changed offending behavior and hampered the crime reduction
effort.

Displacement aside, it is also possible that crime patterns have changed
for other reasons not connected with any displacement from a crime pre-
vention initiative. Either way, for many practitioners the movement of crime
patterns over time is a basic query in many research studies. Whether the
research focus is crime pattern change as a result of different socio-economic
conditions, displacement from a crime prevention initiative or because of
other possibilities, the underlying question that has to be addressed in all of
these studies is the spatial movement (or not) of a crime pattern over time.
This fundamental question is the focus of this paper. The paper will describe
a method to determine if there has been spatial movement in a crime dis-
tribution from one time period to another, and will demonstrate this tech-
nique using an example of a displacement study from a burglary reduction
campaign in Canberra, Australia. Given that spatial displacement is one
application of this technique, and a concern of many practitioners, we begin
by considering the importance of spatial displacement in recent studies.

2. SPATIAL DISPLACEMENT AND CRIME INTERVENTIONS

While there are many different types of displacement, including type of
crime displacement and temporal displacement (Hakim and Rengert, 1981,
p. 11), concern is often voiced with specific regard to spatial displacement.
Spatial displacement occurs when criminals respond to a crime prevention
initiative and move their activities to another location. It can be a common
complaint of crime reduction activity that any initiative will only displace
crime and not reduce it, merely forcing offenders to commit offences in other
places (Town, 2002).

Berry and Jones (1995) note that one of the most potentially beneficial
uses of Geographic Information Systems (GIS) is the measurement of dis-
placement resulting from crime prevention initiatives, and spatial displace-
ment has been a common theme throughout much crime prevention
literature. Even though there exists a concern regarding displacement,
Hesseling’s (1994) review of 55 studies found that there was no evidence of
any displacement in 40% of the research, and no evidence of full
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displacement (the complete transposition of a crime rate from one place to
another) in any of the remaining studies. A 2 year interrupted time series
analysis found no evidence of displacement from an aggressive policing
strategy to tackle disorder (Novak et al., 1999), and indeed Green (1995)
found evidence of diffusion of crime prevention benefits from the Oakland
police SMART drug policing operation in 1988.

Traditional methods for measuring spatial displacement resulting from
crime prevention initiatives have involved the measurement of crime levels
in areas adjacent to the intervention area (Barr and Pease, 1990; Berry and
Jones, 1995; Hesseling, 1994). For example, Sherman et al. (1995) examined
gun crime levels in beats adjacent to the intervention beat, which was itself
some distance from the control area, finding no evidence of displacement
from a police gun crime initiative. There are however methodological lim-
itations to this type of displacement study, and a number of researchers have
identified methodological issues with displacement studies (for example
Hesseling, 1995; Weisburd and Green, 1995).

First, the testing of neighboring police beats or similar administrative
regions contiguous to the intervention site is vulnerable to the Modifiable
Areal Unit Problem (MAUP), a potential source of error that can affect
spatial studies that rely on inference drawn from data aggregated to spatial
boundary units (Bailey and Gatrell, 1995; Openshaw, 1984; Unwin, 1996).
The MAUP is a problem related to geographic boundaries and is opera-
tionalized as the difference in output and analysis that can occur if different
boundaries are used to display and analyze the same data. For example,
imagine a city map depicting a deprivation measure aggregated to census
tracts across a city. By moving the boundaries and selecting completely
different areas as the basis for aggregation of individual level data it would
be possible to change the map. Indeed census tracts are usually comprised of
smaller geographical units such as enumeration districts or block groups. By
selecting different smaller units for aggregation into larger census tracts
vastly different maps can be generated.

Secondly, the technique has limited application when the intervention
being studied is a city-wide initiative. This latter problem was encountered
when attempting to measure spatial displacement resulting from a city-wide
burglary reduction initiative in the Australian capital, the example referred
to later in this paper. Officers had free reign to operate in any part of the city
meaning that it was impossible to determine either an intervention site or
contiguous areas for displacement studies. Measuring displacement to
neighboring areas beyond the city boundary was not a realistic proposition,
given that most of the surrounding area is countryside.

It is worth noting that there is little point in studying any changing
crime patterns in the vicinity of a crime reduction intervention if there is no
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perceived intervention effect in the first place. Bowers and Johnson make
this point with a relatively simple intervention effect test that has been
applied to crime reduction strategies in the UK (Bowers and Johnson, 2003).
The impact from a crime reduction strategy is often best determined through
the use of ARIMA interrupted time series analysis (McDowall et al., 1980)
with the crime reduction strategy introduced to an established series as a
dummy variable. This type of approach has been applied to various crime
problems, including vehicle crime (Krimmel and Mele, 1998), property
crime (Weatherburn et al., 2001) and a variety of police operations (Chilvers
and Weatherburn, 2001; Langworthy, 1989; Novak et al., 1999). If a sig-
nificant intervention effect is detected, then the analyst is able to continue
and explore the possibility of displacement or diffusion within defined
boundaries.

This paper develops a new technique that is appropriate for measuring
the change in point patterns over time, through the development of random
point nearest neighbor distance calculations combined with a Monte Carlo
simulation process. Importantly, the test does not rely on the creation or
adoption of formal boundaries within the study region, avoiding the
MAUP. The technique can be used to determine the existence of significant
changes in intra-regional crime patterns, and is therefore applicable to many
types of crime reduction intervention studies. The next section describes the
use of random point nearest neighbor calculations, and then discusses some
of the operational factors to be considered with this type of analysis, geo-
coding limitations and the necessity to correct for edge effects. The paper
then describes the application of the Monte Carlo process before finishing
with an application of the technique to an example data set drawn from a
police burglary reduction initiative in Canberra, Australia.

3. INTRA-REGION PATTERN CHANGE OVER TIME

3.1. Nearest Neighbor Distances

While first developed in the 1940s and 1950s by botanists, nearest
neighbor distances have been used to examine the spatial arrangement of
points in a variety of application areas (Davis, 1986). More recently, and
more applicable to the crime research environment, CrimeStat, a computer
program developed through a National Institute of Justice grant, uses
nearest neighbor indices and distances to examine crime point pattern data
sets (Levine, 1999). Nearest neighbor statistics can be used to develop a
nearest neighbor distance, defined as the mean distance from each point to
its nearest neighboring location, and from this a nearest neighbor index with
a mean random nearest neighbor distance used as a denominator. The
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denominator is determined as a ratio of the study region area to the number
of points within.

To use the terminology of Bailey and Gatrell (1995), we can start by
considering a nearest neighbor event-to-event distance W, being in a crime
context the distance between one crime location and the nearest neighboring
crime location within a study area R. The other type of event that we can
consider is the random point-to-event distance, X, being the distance between
a randomly generated point r within the study area, and the nearest
neighboring crime event. To investigate the spatial dependence in a single
crime pattern we could examine the observed distribution of either of these
nearest neighbor measures. While limited to only measuring variation in
event–event or point–event distances, this approach allows for the mea-
surement of first order spatial effects that are a feature of many spatial crime
data sets, due to variations in criminal opportunity (Cromwell et al., 1999),
socio-economic circumstances (Hagan and Peterson, 1995; Hakim, 1982)
and policing concentration (Sherman, 1990).

Calculation of a matrix of nearest neighbor distances, either W or X,
resulting in a nearest neighbor index, will only show a measure of spatial
dependence for a single crime pattern. In other words, nearest neighbor
analysis is usually applied as a global measure of distribution that can tell us
if a crime point distribution is randomly patterned, dispersed or clustered,
by calculating the mean of the distance between all points and their nearest
neighbors and comparing this mean to a theoretical distribution. It cannot
however tell us anything about individual patterns within the study area.
Nearest neighbor indices can be compared across data sets to determine
relative concentration of hotspots in point patterns, but the statistic in this
form is unable to determine if comparable data sets have crime concentra-
tions in the same area. Two crime data sets could therefore have the same
nearest neighbor index value, indicating the same level of clustering, but
have crime concentrations in completely different areas of the study region.
If nearest neighbor distances are to be employed to compare the spatial
concentration of two or more point patterns, different methodologies are
required.

Whereas the normal application of a nearest neighbor analysis gener-
ates a mean distance from each point to its nearest neighbor, the approach
in this paper compares individual distances between a random point and the
nearest point in a crime data set. Bailey and Gatrell (1995, p. 119) suggest a
random sample of points within a study region R, and calculate each nearest
neighbor random point-to-event i distance (the first data set), and each
nearest neighbor random point-to-event j distance (the second data set). This
results in a set of paired point–event distances for each of the random points
generated.
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The global measure based on average distances is abandoned in favor
of a technique that generates a ranked list of nearest neighbor distances
from a random point to a crime point. For two data sets sharing the same
study area, this means that two ranked lists are generated with the distance
from each random point to the nearest point in both data sets. These paired
values can then be ranked and compared using a non-parametric rank
correlation measure. The value in this method is the sensitivity to second
order spatial processes in each data set.

This can be seen in Fig. 1 where example distributions of two crime
data sets (triangles and squares) are shown in a study region. Within the
study region are four random points shown in circles labeled 1–4. In the first
example (example A) the two crime patterns are similar and share the same
corner of the study region. The table to the right shown the distance (in
arbitrary units) from each random point to its nearest triangle and nearest
square. Figures in brackets indicate the relative ranking of each random
point within each crime distribution (triangles or squares). In example A,
the points from both distributions share a common area and the relative
rankings of both distributions with the random points are similar. When the

Fig. 1. Example A shows four random points, indicated as circles 1–4, dispersed in a study area

with two crime distributions, triangles and squares. The table to the right shows the nearest

neighbor distances from each random point to the nearest triangle point and the nearest square

point. The distances are in arbitrary units, and the relative ranking of the random point within

each crime set (triangles and squares) is shown in brackets. Where the crime points are inter-

spersed and share the same general area of the study region it can been seen (example A) that

the relative rankings of the random points is the same for both crime sets. When the two

distributions are markedly different, as in example B, the relative rankings of the random points

is different to the level where the change could be detected with a statistical test.
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distributions are markedly different, as in example B, the nearest neighbor
distances are different for triangles and squares and as the figures in brackets
indicate, the relative rankings are also different. This is a change that could
be detected by a statistical test, such as a Spearman rank order correlation.

Non-parametric tests may seem a little unsophisticated, but the use of
correlated rankings neatly sidesteps a potential problem when examining
crime distributions, namely the problem of comparing distributions when
data sets have different numbers of points. When comparing pre- and post-
test crime distributions around a police crackdown, it is anticipated from the
literature (Sherman, 1990) that the latter distribution will usually have fewer
actual events. This means that nearest neighbor distances would reasonably
be expected to be generally larger given the availability of fewer points. In
other words, if actual distances were used the greater distances that may
result from the expected lower number of points would skew the statistical
test, whereas the rankings (relative to random points) prevent the statistical
test from being influenced by the n of the crime distributions. The use of
non-parametric tests that compare within group rankings avoids this po-
tential problem by avoiding direct comparison of the nearest neighbor
distances from one data set to another.

There is also added advantage in a test that does not rank cases between
groups, but ranks within the single crime distribution. Not only does this
mean that crime distributions with significantly different numbers of points
can be directly compared, but also that the number of random points (nran)
in relation to the number of crime points is not a significant factor in
the application of the technique, within limits. Increasing nran will increase
the processing time though increasing the number of points also increases
the likelihood that the random point generation process will create a more
even distribution of points. Decreasing nran will reduce the degrees of freedom
for a correlation significance test, but will improve processing time.

Decisions regarding the appropriate number of random points used
will, to a degree, be a judgment of the researcher, though some guidelines
are suggested. Too few points will reduce the degrees of freedom to the level
that even substantial displacement may not be detected by the statistical test.
Too many random points, especially where the number exceeds the number
of points in any crime data set will tend toward multiple sampling of certain
points, often outliers. Use of too many random points may over-emphasize
the influence of these outliers reducing the opportunity for the test to detect
change in the majority of crime points in hotspots or other clustered areas.

The result is a table with nr rows, where nr is the number of randomly
generated points used in the study, with one column per crime data set
showing the nearest neighbor distance from each random point to the
nearest point in the data set. When comparing two crime patterns the
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relative rankings of the random point nearest neighbor distances can be
assessed for significance using a rank correlation test such as a Spearman
rank correlation coefficient test.

Interpretation of nearest neighbor distances can reveal changes in crime
density in a single data set across a study region, however to be an effective
measure there are two assumptions. First that all crime events that have
occurred within the study region have been geocoded, and secondly that we
can correct for edge effects. These assumptions are discussed in the next
section.

3.2. Geocoding and Edge Effects

This type of spatial examination makes two implicit assumptions.
Firstly the assumption exists that all crime events (of the chosen crime type)
have been geocoded and exist within the mappable data set for selection,
and secondly that a correction for edge effects has been made.

The first supposition means that they are available to be chosen as a
potential nearest neighbor to a randomly generated point. In most cases
there will be a limit to the data quality such that some crime events are not
geocodable due to a variety of factors (Harries, 1999; Ratcliffe, 2001a). The
question therefore arises as to how much geocoding is practically necessary
to complete a reasonable spatial study given the data quality realities? One
estimate is a minimum of 85% accurate geocoding (Ratcliffe, 2004), a figure
derived from an analysis based on a statistical comparison of 100% geo-
coded thematic maps with a repeating series of maps with progressively
fewer geocoded points. However a figure of 85% assumes that there is no
significant pattern in the ungeocoded locations and that crime events that
are not able to be mapped do not display significant spatial autocorrelation.
In reality, a percentage figure in the mid to high nineties is more realistic for
a constantly reliable hit rate. In the study that follows, geocoding was
successful to at least 97%.

Although computationally intensive with large data sets, correcting for
edge effects requires examination of each nearest neighbor distance calcu-
lation to ensure that edge effects are not a factor. They can occur when there
is the possibility that a nearest neighbor distance for a point–event or event–
event calculation near the boundary of the study region R will be biased
(Bailey and Gatrell, 1995, p. 90) tending to the possibility that nearest
neighbor distances are larger nearer the edge than in the center of the study
region. This can occur because events near the boundary are denied the
possibility of neighbors that reside just outside the study region.

This potential bias to exaggerate nearest neighbor distances near the
border of R has been recognized but not perceived as a significant issue in
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the analysis of crime data. Edge effects are a common problem in crime
analysis because law enforcement analysts rarely have access to crime dis-
tributions in neighboring police jurisdictions. Levine (1999, p. 141) suggests
that failing to correct for edge effects can actually add a conservative facet to
a significance test in a single pattern analysis. This suggestion is made on the
basis that many social science data sets show evidence of clustering, there-
fore a test that exaggerates distances in some areas of R will increase the
robustness of any significant clustering discovered.

In this study, however, the reverse argument occurs when comparing
the spatial distribution of two point patterns when seeking to determine if
the event concentrations occur in the same sub-regions of R. If the two
patterns show markedly different distributions in the areas of higher density,
then there is the possibility that one pattern will have a crime cluster close to
a boundary while a comparable data set will not. Allowing random points to
remain close to the boundary may favor a crime pattern that has a con-
centration of points near the border of R. This would exaggerate the sig-
nificance of any comparative measure, with the potential to artificially
increase the significance of the eventual test result. The distribution that is
clustered near the border will benefit from random points near the border
(and subsequently have low nearest neighbor distances) while the more
dispersed distribution is denied the possibility of points that might fall just
outside the study area. This would run the risk of artificially increasing the
nearest neighbor distances from random points at the border to the latter
distribution.

With a potential for a possibly false increase in one set of nearest
neighbor distances, the correlation between nearest neighbor distances for
random points at, or near, the border has the potential to be artificially
inflated. In a significance test that seeks out differences in the nearest
neighbor distances from one set of random point to two distributions, this
could result in a false positive outcome. Davis (1986, p. 309) describes edge
effects as ‘‘a serious defect for most practical purposes’’. It is therefore
advisable to correct for edge effects if possible.

There are a number of possible solutions to edge effects. For general
spatial studies, a ‘‘guard area’’ can be constructed around the edge of the study
such that points in the guard area are not included in the analysis but can be
selected as a nearest neighbor for a crime pointwithin the study region (Gatrell
et al., 1996, p. 258). A guard area in this case is an internal boundary created
within a study region that cannot be used to generate randompoints. Random
points are therefore excluded from existing at the edge of the study area,
though they are allowed to find nearest neighbors from within the guard area.
This has the effect of forcing random points away from the edge, reducing the
likelihood that a nearest point could be found outside the whole study area.
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Difficulties can occur with choosing an appropriate guard area distance
that ensures no point selected for analysis is too close to the study boundary
while still retaining enough points for a meaningful analysis. The use of a
guard area can also be restrictive in that the choice of a guard area is often
largely subjective and cannot be adapted for different areas of the study
region. In other words, if a 1000 foot guard area is selected, it is generally
applied to the whole study region boundary irrespective of whether it is
necessary.

This study employs a more adaptive approach by employing a spatial
buffer query feature of a GIS.2 Randomly generated points and their
respective nearest neighbor distances can be discarded and a new random
point generated for any random points that are closer to a boundary of the
study region R than any nearest neighbor point–event distances. This is
shown in Fig. 2 where a detail of a city is shown with crime events geocoded
around various suburbs are from two crime series, 1 and 2. In this example

Fig. 2. Crime points from two series (1 and 2) are shown geocoded in a detail of a city’s

suburbs. A random generated point (r) is shown, with a buffer signifying the greater of the two

nearest neighbor distances of r)1 and r)2. When edge effects are considered, points such as this

random point would be rejected because part of the buffered area lies outside the study region

R. It is possible that a 1 series point could lie closer to the random point r but outside the city

boundary R. To correct for this, a new point would be generated and the same test adminis-

tered.

2The two biggest desktop mapping packages in terms of market share (ESRI’s ArcGIS and

MapInfo) both have standard buffer creation utilities to create a selectable circle around a

point with a user-determined radius.
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series 1 could be considered a first series and series 2 a second series. A
buffer generated around a random point shown as a dark point (r) is created
for the larger of the two nearest neighbor distances (r)1 and r)2). The lower
left part of the buffered region includes an area that lies outside of the city
boundary (study region R). In this case, the random point would be dis-
carded because crime series 1 is denied the possibility of a smaller nearest
neighbor distance to a potential point outside the study area but within the
circle shown.

This adaptive method allows for variation in the shape of the study
region R by not requiring the construction of a guard area that might be
excessive in some parts of R while unable to properly prevent edge effects in
other parts of R.

It is adaptive because where nearest neighbor distances are small the
buffer is smaller allowing random points closer to the edge of the study
region. The method is sensitive to the distribution of crime series. In high
crime areas the clustering of points from both series will mean that random
points in a high crime cluster near the edge of R will have small r)1 and r)2
nearest neighbor distances, allowing random points to be accepted even
when close to the border of R.

3.3. Monte Carlo Simulation

The methodology so far describes a process that assesses the correlation
of two crime series through the use of nearest neighbor distances to a set of
randomly generated points. It is possible that a set of random points could
have a highly unusual distribution that finds a high correlation between
crime series even when the distribution of the two series is substantially
different. Nearest neighbor analyses are sensitive to outliers and this draws
into question the reliability of a measure when an unusual distribution of the
catalyst random point set can give an anomalous result.

An example of one type of problem is shown in Fig. 3. As with Fig. 2,
crime points from two series (1 and 2) are shown geocoded in a detail of a
city’s suburbs. A random generated point (r) is shown as a dark point. In
this example, there is a clear cluster of points from series 1 in the bottom left
of the image and a lone point from the same crime series (1) in the top right,
close to the random point. The nearest neighbor distance for the random
point to the nearest point in series 1 would still be a relatively short distance
because there is a lone series 1 point near the random point r even though
the random point is some distance from the larger cluster in the bottom left.
The nearest neighbor distance for this random point r to series 1 and to
series 2 would be small and may achieve a similar rank order in a correlation
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test. If more random points had a similar distribution that favored outliers
or lone points in one distribution it may be difficult for the rank correlation
coefficient test to determine any difference between the spatial densities of
the tested series. To correct for the possible effects of an unusual random
point distribution, this paper proceeds to describe the use of multiple real-
izations to better ascertain the actual correlation of two crime series.

The principle of Monte Carlo simulation is the realization that there
may be times when you do not have a complete understanding of the pro-
cesses that might affect the working of a system. In these circumstances,
such as the random point generation process described here, it becomes
problematic to develop a model to process error and predict an outcome. In
essence, a different set of random points may generate a different result.
However given that a set of multiple outcomes can be generated through
repeated testing it is possible to use the statistical summary of the products
to determine some new estimates for the process being tested that conform
to the distribution of observed values. The use of Monte Carlo methods are
considered appropriate as a means to combat error propagation problems
within GIS (Openshaw, 1989).

The problem of different random point distributions can be formulated
such that a Monte Carlo process can simulate repeated application of a

Fig. 3. A random point (r) is plotted some distance from the main cluster from crime series 1,

featured at the bottom left of the diagram. The nearest neighbor distance r)1 will still be small

however, due to the proximity of a single outlier some distance from the main cluster but close

to r. Monte Carlo simulation is used to correct for this potential effect.
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stochastic process and generate a set of observed values. In the examination
of burglary patterns in Canberra, 100 random points (after edge correction)
were created in each realization of the Monte Carlo process.

The question arises as to what is an appropriate number of repeated
testing (M). The whole process does require computation time, especially
with the example data drawn from the Australian capital. Due to the
unusual shape of the city of Canberra many points are discarded due to edge
effects. A sufficient number of repeated observations must be made to
realistically model the stochastic processes under investigation, while
excessive testing adds little to the analysis. The number of simulations
necessary to properly represent the distribution of the uncertainty factor is a
subject of debate. Given that the result of each realization of the Monte
Carlo process was a rank correlation coefficient it was possible to graph the
coefficient frequency distribution. In the GIS literature values of M ¼ 50
have been used (Davis and Keller, 1997), though simulations with as low as
20 runs have achieved statistically significant results (Hope, 1968).

In this study it was determined that 100 realizations of the Monte Carlo
process were sufficient to allow for a normal distribution for the observed
values of the Spearman correlation test, with absolute skew and kurtosis
values less than 1.0. When interpreting the results, a statistically significant
positive correlation indicates that the two distributions are in the same areas
and therefore is interpreted as no pattern change, while a significant negative
correlation indicates real movement in crime patterns. As such, the distri-
bution of random points is critical to the test and increased numbers of
realizations reduces the potential for an unusual random point distribution
skewing the results. If time were pressing a value less than M ¼ 100 would
be acceptable, though this study emphasizes caution. Repeated testing in
this manner removes the impact of any peculiarities due to unusual random
selection processes in the generation of testable points, and allows conclu-
sions to be drawn from the aggregated results of all realizations of the
Monte Carlo process. The result is a normally distributed series of M
Spearman rank correlation coefficients, where M is the number of simula-
tions operationalized.

Increasing the value of M might be necessary to achieve a normally
distributed set of outcomes, and the user could employ a test such as a
Kolmogorov–Smirnov test to ascertain if sufficient realizations have been
conducted such that a desired distribution of outcomes existed.

Once the user has a normally distributed series of M Spearman rank
correlation coefficients (where M is the number of Monte Carlo simulations
completed), the results must be interpreted to determine significance. As
each simulation uses the same number of random points, the degrees of
freedom will be the same and the test statistic for each run will be the same.
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If a chosen level of significance is decided on, for example P < 0.05, then
each individual run can be examined for statistical significance. Combining
a number of observations from the Monte Carlo simulation for an overall
significance test is a relatively simple next step. A histogram or table can be
constructed to examine how many runs have achieved an individual level of
significance at the chosen level (in this example P < 0.05). If in this example
we remain with the 0.05 level then the result of the Monte Carlo simulations
is statistically significant if 95% of the runs achieve the test statistic level.

In summary, this technique solves the problem of examining point
pattern changes when points are aggregated to areal units such as police
beats, census tracts or even regular grids as the nearest neighbor approach
here is not vulnerable to the MAUP. Furthermore, the use of a random
point generation of a more systematic point generation process has addi-
tional advantages. Although intuitively using a grid or similar artifice to
distribute the points created as the basis for the nearest neighbor test, this
type of systematic sampling process is vulnerable to the problem of ‘‘pat-
terning’’ (Ebdon, 1996, pp. 42–44). This occurs when a regular pattern is
placed over a similarly regular pattern of urban geography and is especially
a potential problem in the regular patterns of US cities. For example, if
robberies were highly clustered around major road intersections spaced at
1 km distance, a regular grid with a resolution of 1 km would potentially
either miss every major junction, or exactly sample every major junction. A
random point generation process resolves this problem. We now move to a
demonstration of the technique.

4. EXAMPLE: BURGLARY IN CANBERRA

Located some 200 miles South of Australia’s largest city Sydney,
Canberra is the Australian capital. The city has a population of approxi-
mately 330,000 nestled in the hills of the Australian Capital Territory, an
administrative region set up in the early part of the last century to house the
capital city. The city has high levels of education and a significant propor-
tion of the city’s workforce are employed by the Federal government. The
city also has a burglary problem. In 2000 there were 2494 burglaries for
every 100,000 residents, the third highest rate of the eight Australia states
and territories (ABS, 2001).

Policing of the Australian Capital Territory is contracted to the
Australian Federal Police (AFP). In response to the rising burglary problem,
the AFP undertook Operation Anchorage in the early part of 2001.
Anchorage was a burglary reduction strategy that aimed to reduce burglaries
by 20% on the previous year. The operation lasted approximately 4 months.
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A number of law enforcement strategies were undertaken, including use of
surveillance teams deployed to observe prolific offenders, use of random
breath test road blocks in high burglary areas, execution of warrants for
suspected offenders and any other tactics the operational management felt
might be effective. The management were supported by a six person intelli-
gence team dedicated to the operation. These individuals would analyze crime
and map incidents across the city, enabling the operational management team
to deploy resources at the most effective time and places.

Unlike in the United States, in Australia there is no real distinction
between crime analysis and intelligence at the operational police level, so the
intelligence staff were involved in a variety of activities including link
association charting, crime mapping, and temporal analysis. While the
number was variable, the operation had approximately 60 staff dedicated to
Anchorage during the 4 months of operation, a considerable commitment
for a force of approximately 600 officers.

While the management had the option to deploy resources across the
whole city, the use of mapping and intelligence techniques gave the opera-
tion a spatial focus. This variable enforcement level was determined by the
desire to focus resources in the worst hit areas, though these areas changed
dependent on criminal behavior. The question of spatial displacement arose
during discussions of the operation. While Canberra is generally surrounded
by countryside (with the exception of the city of Queenbeyan to the South-East),
displacement within the city was a consideration. Were the police upsetting
the normal ‘‘business plan’’ of offenders, forcing them to target different
areas from normal? The questions to be answered was; ‘‘Are within-city
burglary spatial patterns changing as a result of Operation Anchorage?’’

The difficulty with answering this question in a quantitative sense is
demonstrated by Fig. 4. The two maps show hotspot surface maps of
burglary in the more than 100 urban suburbs of the Australian Capital
Territory in the 4 weeks prior to Operation Anchorage (left) and after the
operation had been conducted for 4 weeks (right map). While the decrease
in overall hotspot significance is to be expected, there are four distinct areas
where it is possible some spatial change has occurred. In the area marked A,
there appears to be a substantial decrease in activity in a number of suburbs.
In the broader area of B, there has been some decrease, but also develop-
ment of a new noticeable hotspot in one location, in the heart of a suburb
that only had a moderate level of burglary in the earlier map.3 Does this

3As a reviewer pointed out, hotspots of one crime distribution close to the borders of the study

area could potentially be affected by the edge correction process. In the case of the noticeable

new hotspot in the second map at area B, this hotspot is far enough from the borders of the

study area to be unaffected by the edge correction process, which works closer to the edge of

the city.
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indicate a spatial change resulting from the operation? Is this a ‘‘real’’
change? Areas C and D show decreases in burglary, with the possibility of
some slight movement. The difficulty with a simply visual interpretation is
the subjectivity of the analysis. Although there would appear to be some
substantial decreases in activity, has there also been significant movement?

4.1. Testing Displacement Around Operation Anchorage

The first stage is to confirm that an actual crime reduction took place
(Bowers and Johnson, 2003). It was therefore established that a positive
intervention effect occurred, and that the reduction in crime was significant
(Ratcliffe, 2001b). The next stage explores the possibility of changes in crime
patterns resulting from the police initiative.

The technique explained in this paper was applied to city burglary
patterns for four distinct crime series, each 28 days in length. The first three
periods were the three 28 day consecutive periods immediately prior to the
commencement of Operation Anchorage. The last period (4) was the first

Fig. 4. Two hotspot maps of burglary in the ACT, one a snapshot of the 4 weeks of burglary

prior to the police operation (left) and one a snapshot of burglary during the first 4 weeks of the

operation (right).
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28 days of Operation Anchorage. Table I described the four time periods
and shows the number of burglaries reported across Canberra during each
time.

In this example we explore if the first 4 weeks of Operation Anchorage
were accompanied by spatial displacement of burglary targets. This question
is of relevance to police agencies undertaking crackdowns in the name of
crime prevention. If police activities are concentrated in a number of areas,
will a reduction in crime also be associated with displacement of the crime
that does remain? Traditional measures of displacement that rely on mea-
suring levels of crime in discrete areas are not suitable in a situation where
the AFP commanders were able to deploy resources to any part of the city in
response to timely intelligence analysis of the crime problem. The technique
described earlier was therefore developed to perform the analysis.

Each of the four periods (Table I, 1–4) were compared with the
remaining three across 100 random points, with 100 realizations of the
Monte Carlo process. Each simulation generated a rank order correlation.
Fig. 5 shows a histogram of the Spearman rank correlation coefficient val-
ues for 100 simulations of the technique. The 100 simulations were the
application of the random point nearest neighbor measurements between
the period 3 data (immediately prior to the police operation) and the period
4 data (the first 4 weeks of the operation). With a test statistic of 0.165 (one-
tailed, P ¼ 0.05, Ebdon, 1996, p. 219) each realization produced a signifi-
cant correlation between the point patterns to at least P ¼ 0.05. While two
distributions produced negative skew calculations slightly larger than )1.0,
the kurtosis remained lower than 1.0 and, more importantly, all correlations
produced Spearman rank correlation coefficient values significant to at least
P ¼ 0.05.

From these results we can determine that the spatial pattern of bur-
glaries during the first 4 weeks of Operation Anchorage does not appear to
vary significantly from the spatial patterning of offences in the preceding
three 28 day periods (Table II).

Table I. Reported Burglaries in the Australian Capital Territory for the Four 28 Day Periods

Examined in this Study

Period Dates Reported burglaries

Period 1 4 Dec 00–31 Dec 00 584
Period 2 1 Jan 01–28 Jan 01 556
Period 3 29 Jan 01–25 Feb 01 661
Operation Anchorage begins
Period 4 26 Feb 01–25 Mar 01 386

Detecting Spatial Movement of Intra-Region Crime Patterns Over Time 119



5. CONCLUDING COMMENTS

This paper describes a new approach developed to test a specific
question of spatial displacement from a city-wide police crackdown, or
generally the movement of crime patterns within single areas. City-wide
police operations take place around the world but are often subjected to a
number of stock criticisms. These include the notion that crime will be
geographically displaced, that the problem will return once the police
crackdown ends, or that the crackdown is merely a political gesture. This
technique specifically addresses one of these criticisms, that of spatial dis-
placement. This is a common concern, even though there is scant evidence
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Fig. 5. Histogram of the Spearman rank correlation coefficient values for the 100 simulations

that compared rank correlations between random point nearest neighbor distances for the

period 3 data (immediately prior to the police operation) and the period 4 data (the first 4 weeks

of the operation). Series has a mean of 0.525, standard deviation of 0.081, skew of )0.17 and

kurtosis of )0.65, indicating an acceptably normal distribution.

Table II. Correlation Matrix Showing the Mean Correlation Coefficient of 100

Realizations of the Monte Carlo Process for Nearest Neighbor Random Point Analysis

of the Three Time Periods Prior to Operation Anchorage, and the First 4 Weeks of the

Operation

Period 2 Period 3 Period 4

Period 1 0.562 0.574 0.543
Period 2 0.542 0.532
Period 3 0.525

With a test statistic of 0.165 at the 95% significance level, each realization produced a
significant correlation to at least P = 0.05, while the mean values display a greater
significance level.
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that displacement is a significant problem (Barr and Pease, 1990; Hesseling,
1994). Eck, in his chapter on prevention of crime at places, notes that where
evidence can be found for displacement; ‘‘displacement seldom overwhelms
prevention effects’’ (Sherman et al., 1998, Chapter 7).

Police departments are often keen to implement city-wide initiatives.
Even though operations targeted at high risk places, people and times have
been shown to be more effective than indiscriminant tactics (Sherman et al.,
1998, Chapter 8), city-wide initiatives have the advantage that they do not
appear to be favoring particular communities within the city. Furthermore,
city-wide law enforcement initiatives are easier to sell to the rank and file
officers, again with the view that no particular district or precinct is seen to
be favored. These are realistic political considerations for a police chief.
Police crackdowns therefore remain popular. Given the findings from
Canberra, other areas may take some solace that displacement within the
city does not necessarily occur.

In the example shown, the results showed a marked degree of similarity.
This is to be expected as there is little evidence for displacement in the liter-
ature. As such, the interpretation of the graph in Fig. 5 is relatively easy.
However, two distributions with significantly different spatial patterns would
result in lower correlations because some random points would be closer to
point clusters in one distribution and further from points in other distribu-
tions. This increases the chance that the normally distributed results would
intersect with the P value that would indicate significant correlation (in the
example here, 0.165). It would probably be reasonable to assume that the
point patterns were not significantly different if more than 90–95% of the
results were above this threshold, suggesting a relatively low combined error
rate. Increased numbers of results from theMonte Carlo simulation that were
below the threshold would begin to suggest significant changes in patterns.

The technique demonstrated does require some computer programming
effort, however given that a number of researchers have noted methodo-
logical issues with displacement research, a more complex solution to dis-
placement studies may not be popular with practitioners, but necessary.

From a research and practitioner perspective, the process shown here
would constitute the middle stage in a larger study. The first stage, as dis-
cussed earlier, would be to establish if there has been any positive inter-
vention effect that could cause the movement of crime patterns. The process
shown here could then be applied to measure any significant crime pattern
movement. If any were detected, the next stage would be to map and explore
areas of crime movement and attempt to identify the processes and under-
lying reasons for the movement of the crime patterns. The procedure in this
paper is therefore not a complete methodology, but a piece is a larger
quantitative process.
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